Skip to main content
Top

2018 | OriginalPaper | Chapter

5. Combustion Instability at Lean Limit

Author : Sayan Biswas

Published in: Physics of Turbulent Jet Ignition

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years gas engine manufacturers have faced stringent emission regulations on oxides of nitrogen (NOx) and unburned hydrocarbons (UHC) [1, 2]. Operating internal combustion engines at ultra-lean conditions can reduce NOx emissions and also improve thermal efficiency [3, 4]. An approach that can potentially solve the challenge of igniting ultra-lean mixtures is to use a reacting/reacted hot turbulent jet to ignite the ultra-lean mixture instead of a conventional electric spark [5–10]. The hot turbulent jet is produced by burning a small amount of stoichiometric or near-stoichiometric fuel/air mixture in a small volume separated from the main combustion chamber called the pre-chamber. The higher pressure resulting from pre-chamber combustion pushes combustion products into the main combustion chamber in the form of a hot reacting/reacted turbulent jet, which then ignites the ultra-lean mixture in the main combustion chamber. Compared to conventional spark ignition, the hot turbulent jet has a much larger surface area containing numerous ignition kernels over which ignition can occur. Hot jet ignition has the potential to enable the combustion system to operate near the fuel’s lean flammability limit, leading to ultralow emissions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference United States, E.P.A: Office of transportation and air quality. In: Non-conformance Penalties for Heavy-Duty Diesel Engines Subject to the 2010 NOx Emission Standard. U.S. Environmental Protection Agency, Office of Transportation and Air Quality, Washington, DC (2012) United States, E.P.A: Office of transportation and air quality. In: Non-conformance Penalties for Heavy-Duty Diesel Engines Subject to the 2010 NOx Emission Standard. U.S. Environmental Protection Agency, Office of Transportation and Air Quality, Washington, DC (2012)
2.
go back to reference Peckham, J.: U.S. EPA doubles 'Non-conformance penalties' for Navistar 2012 diesel trucks. Dies Fuel News. 16(34), 4–5 (2012)MathSciNet Peckham, J.: U.S. EPA doubles 'Non-conformance penalties' for Navistar 2012 diesel trucks. Dies Fuel News. 16(34), 4–5 (2012)MathSciNet
4.
go back to reference Dunn-Rankin, D.: Lean Combustion: Technology and Control. Academic Press, Amsterdam/Boston (2008.) xi, 261 p., 8 p. of plates Dunn-Rankin, D.: Lean Combustion: Technology and Control. Academic Press, Amsterdam/Boston (2008.) xi, 261 p., 8 p. of plates
5.
go back to reference Toulson, E., et al.: Visualization of propane and natural gas spark ignition and turbulent jet ignition combustion. SAE Int. J. Engines. 5(4), 1821–1835 (2012)CrossRef Toulson, E., et al.: Visualization of propane and natural gas spark ignition and turbulent jet ignition combustion. SAE Int. J. Engines. 5(4), 1821–1835 (2012)CrossRef
7.
go back to reference Sadanandan, R., et al.: Detailed investigation of ignition by hot gas jets. Proc. Combust. Inst. 31(1), 719–726 (2007)CrossRef Sadanandan, R., et al.: Detailed investigation of ignition by hot gas jets. Proc. Combust. Inst. 31(1), 719–726 (2007)CrossRef
8.
go back to reference Ghoniem, A.F., Oppenheim, A.K., Chen, D.Y.: Experimental and Theoretical Study of Combustion Jet Ignition. California University, Berkeley (1983) Ghoniem, A.F., Oppenheim, A.K., Chen, D.Y.: Experimental and Theoretical Study of Combustion Jet Ignition. California University, Berkeley (1983)
10.
go back to reference Wolfhard, H.G.: The ignition of combustible mixtures by hot gases. J. Jet Propul. 28(12), 798–804 (1958)CrossRef Wolfhard, H.G.: The ignition of combustible mixtures by hot gases. J. Jet Propul. 28(12), 798–804 (1958)CrossRef
11.
go back to reference Lee, K., et al.: CO2 radiation heat loss effects on NOx emissions and combustion instabilities in lean premixed flames. Fuel. 106, 682–689 (2013)CrossRef Lee, K., et al.: CO2 radiation heat loss effects on NOx emissions and combustion instabilities in lean premixed flames. Fuel. 106, 682–689 (2013)CrossRef
13.
go back to reference Clayton, R.M., Sotter, J.G., Woodward, J.W.: Injector response to strong, high-frequency pressure oscillations. J. Spacecr. Rocket. 6(4), 504–506 (1969)CrossRef Clayton, R.M., Sotter, J.G., Woodward, J.W.: Injector response to strong, high-frequency pressure oscillations. J. Spacecr. Rocket. 6(4), 504–506 (1969)CrossRef
14.
go back to reference Natanzon, M.S., Culick, F.E.C.: Combustion instability. In: Progress in Astronautics and Aeronautics. American Institute of Aeronautics & Astronautics, Reston (2008) Natanzon, M.S., Culick, F.E.C.: Combustion instability. In: Progress in Astronautics and Aeronautics. American Institute of Aeronautics & Astronautics, Reston (2008)
15.
go back to reference O'Connor, J., Acharya, V., Lieuwen, T.: Transverse combustion instabilities: acoustic, fluid mechanic, and flame processes. Prog. Energy Combust. Sci. 49, 1–39 (2015)CrossRef O'Connor, J., Acharya, V., Lieuwen, T.: Transverse combustion instabilities: acoustic, fluid mechanic, and flame processes. Prog. Energy Combust. Sci. 49, 1–39 (2015)CrossRef
16.
go back to reference Fischbach, S.R.: Solid rocket motor combustion instability modeling in COMSOL multiphysics. In: COMSOL Conference. Boston (2015) Fischbach, S.R.: Solid rocket motor combustion instability modeling in COMSOL multiphysics. In: COMSOL Conference. Boston (2015)
18.
go back to reference Williams, F.A., Barrère, M., Huang, N.C.: Fundamental aspects of solid propellant rockets. In: AGARDograph, vol. iii-xxii, p. 791. Aerospace Research and Development of N.A.T.O. by Technivision Services, Slough/London (1969) Williams, F.A., Barrère, M., Huang, N.C.: Fundamental aspects of solid propellant rockets. In: AGARDograph, vol. iii-xxii, p. 791. Aerospace Research and Development of N.A.T.O. by Technivision Services, Slough/London (1969)
19.
go back to reference Price, E.W.: Review of experimental research on combustion instability of solid propellants, in solid propellant rocket research. Progr. Astronaut. Rocket. 1, 561–602 (1960) Price, E.W.: Review of experimental research on combustion instability of solid propellants, in solid propellant rocket research. Progr. Astronaut. Rocket. 1, 561–602 (1960)
20.
go back to reference Price, E.W.: Combustion instability in solid propellant rocket motors. Astronaut. Acta. 5(C), 63–72 (1959) Price, E.W.: Combustion instability in solid propellant rocket motors. Astronaut. Acta. 5(C), 63–72 (1959)
21.
go back to reference Bennewitz, J.W., Lineberry, D.M., Frederick, R.: Application of high-frequency pressure disturbances as a control mechanism for liquid rocket engine combustion instabilities. In: 9th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. San Jose (2013) Bennewitz, J.W., Lineberry, D.M., Frederick, R.: Application of high-frequency pressure disturbances as a control mechanism for liquid rocket engine combustion instabilities. In: 9th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. San Jose (2013)
23.
go back to reference Zhang, H., et al.: Analysis of combustion instability via constant volume combustion in a LOX/RP-1 bipropellant liquid rocket engine. SCIENCE CHINA Technol. Sci. 55(4), 1066–1077 (2012)CrossRef Zhang, H., et al.: Analysis of combustion instability via constant volume combustion in a LOX/RP-1 bipropellant liquid rocket engine. SCIENCE CHINA Technol. Sci. 55(4), 1066–1077 (2012)CrossRef
24.
go back to reference Quinlan, M., et al.: Theoretical, Numerical, and Experimental Investigations of the Fundamental Processes that Drive Combustion Instabilities in Liquid Rocket Engines. Georgia Institution of Technology, Atlanta (2012) Quinlan, M., et al.: Theoretical, Numerical, and Experimental Investigations of the Fundamental Processes that Drive Combustion Instabilities in Liquid Rocket Engines. Georgia Institution of Technology, Atlanta (2012)
25.
go back to reference Chehroudi, B.: Physical hypothesis for the combustion instability in cryogenic liquid rocket engines. J. Propuls. Power. 26(6), 1153–1160 (2010)CrossRef Chehroudi, B.: Physical hypothesis for the combustion instability in cryogenic liquid rocket engines. J. Propuls. Power. 26(6), 1153–1160 (2010)CrossRef
26.
go back to reference Dranovsky, M.L., Vigor, Y., Culick, F.E.C.: Combustion Instabilities in Liquid Rocket Engines : Testing and Development Practices in Russia. American Institute of Aeronautics and Astronautics, Washington, DC (2007)CrossRef Dranovsky, M.L., Vigor, Y., Culick, F.E.C.: Combustion Instabilities in Liquid Rocket Engines : Testing and Development Practices in Russia. American Institute of Aeronautics and Astronautics, Washington, DC (2007)CrossRef
27.
go back to reference Temme, J.E., Allison, P.M., Driscoll, J.F.: Combustion instability of a lean premixed prevaporized gas turbine combustor studied using phase-averaged PIV. Combust. Flame. 161(4), 958–970 (2014)CrossRef Temme, J.E., Allison, P.M., Driscoll, J.F.: Combustion instability of a lean premixed prevaporized gas turbine combustor studied using phase-averaged PIV. Combust. Flame. 161(4), 958–970 (2014)CrossRef
28.
go back to reference Lieuwen, T.C., Yang, V.: Combustion instabilities in gas turbine engines: operational experience, fundamental mechanisms and modeling. In: Progress in Astronautics and Aeronautics, vol. xiv, p. 657. American Institute of Aeronautics and Astronautics, Reston (2005) Lieuwen, T.C., Yang, V.: Combustion instabilities in gas turbine engines: operational experience, fundamental mechanisms and modeling. In: Progress in Astronautics and Aeronautics, vol. xiv, p. 657. American Institute of Aeronautics and Astronautics, Reston (2005)
29.
go back to reference Kim, D., et al.: Effect of flame structure on the flame transfer function in a premixed gas turbine combustor. J. Eng. Gas Turbines Power. 132(2), 021502 (2010)CrossRef Kim, D., et al.: Effect of flame structure on the flame transfer function in a premixed gas turbine combustor. J. Eng. Gas Turbines Power. 132(2), 021502 (2010)CrossRef
30.
go back to reference Steinberg, A.M., et al.: Flow–flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor. Combust. Flame. 157(12), 2250–2266 (2010)CrossRef Steinberg, A.M., et al.: Flow–flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor. Combust. Flame. 157(12), 2250–2266 (2010)CrossRef
31.
go back to reference Dowling, A.P., Stow, S.R.: Acoustic analysis of gas turbine combustors. J. Propuls. Power. 19(5), 751–764 (2003)CrossRef Dowling, A.P., Stow, S.R.: Acoustic analysis of gas turbine combustors. J. Propuls. Power. 19(5), 751–764 (2003)CrossRef
32.
go back to reference Brookes, S.J., et al.: Computational modeling of self-excited combustion instabilities. J. Eng. Gas Turbines Power. 123(2), 322 (2001)CrossRef Brookes, S.J., et al.: Computational modeling of self-excited combustion instabilities. J. Eng. Gas Turbines Power. 123(2), 322 (2001)CrossRef
33.
go back to reference Keller, J.J.: Thermoacoustic oscillations in combustion chambers of gas turbines. AIAA J. 33(12), 2280–2287 (1995)CrossRef Keller, J.J.: Thermoacoustic oscillations in combustion chambers of gas turbines. AIAA J. 33(12), 2280–2287 (1995)CrossRef
34.
go back to reference Biswas, S., et al.: On ignition mechanisms of premixed CH4/air and H2/air using a hot turbulent jet generated by pre-chamber combustion. Appl. Therm. Eng. 106, 925–937 (2016)CrossRef Biswas, S., et al.: On ignition mechanisms of premixed CH4/air and H2/air using a hot turbulent jet generated by pre-chamber combustion. Appl. Therm. Eng. 106, 925–937 (2016)CrossRef
35.
go back to reference Biswas, S., Qiao, L.: Prechamber hot jet ignition of ultra-lean H2/air mixtures: effect of supersonic jets and combustion instability. SAE Int. J. Engines. 9(3), 1584–1592 (2016)CrossRef Biswas, S., Qiao, L.: Prechamber hot jet ignition of ultra-lean H2/air mixtures: effect of supersonic jets and combustion instability. SAE Int. J. Engines. 9(3), 1584–1592 (2016)CrossRef
36.
go back to reference Möser, M.: Engineering Acoustics: an Introduction to Noise Control, vol. xi, p. 289. Springer, Berlin/New York (2004)CrossRef Möser, M.: Engineering Acoustics: an Introduction to Noise Control, vol. xi, p. 289. Springer, Berlin/New York (2004)CrossRef
37.
go back to reference Fahy, F.: Foundations of Engineering Acoustics, vol. xix, p. 443. Academic, San Diego (2001) Fahy, F.: Foundations of Engineering Acoustics, vol. xix, p. 443. Academic, San Diego (2001)
38.
39.
go back to reference Sagaut, P.: Large Eddy Simulation for Incompressible Flows an Introduction, 3rd edn. Springer Books, New York (2006)MATH Sagaut, P.: Large Eddy Simulation for Incompressible Flows an Introduction, 3rd edn. Springer Books, New York (2006)MATH
40.
go back to reference Frezzotti, M.L., et al.: Response Function Modeling in the Study of Longitudinal Combustion Instability by a Quasi-1D Eulerian Solver (2015) Frezzotti, M.L., et al.: Response Function Modeling in the Study of Longitudinal Combustion Instability by a Quasi-1D Eulerian Solver (2015)
41.
go back to reference Monkewitz, P.A., et al.: Self-excited oscillations and mixing in a heated round jet. J. Fluid Mech. 213(1), 611 (2006)MathSciNet Monkewitz, P.A., et al.: Self-excited oscillations and mixing in a heated round jet. J. Fluid Mech. 213(1), 611 (2006)MathSciNet
42.
go back to reference Yu, M.H., Monkewitz, P.A.: The effect of nonuniform density on the absolute instability of two-dimensional inertial jets and wakes. Phys. Fluids A Fluid Dyn. 2(7), 1175–1181 (1990)CrossRef Yu, M.H., Monkewitz, P.A.: The effect of nonuniform density on the absolute instability of two-dimensional inertial jets and wakes. Phys. Fluids A Fluid Dyn. 2(7), 1175–1181 (1990)CrossRef
43.
go back to reference Monkewitz, P.A., Sohn, K.: Absolute instability in hot jets. AIAA J. 26(8), 911–916 (1988)CrossRef Monkewitz, P.A., Sohn, K.: Absolute instability in hot jets. AIAA J. 26(8), 911–916 (1988)CrossRef
44.
go back to reference Raynal, L., et al.: The oscillatory instability of plane variable-density jets. Phys. Fluids. 8(4), 993–1006 (1996)MathSciNetCrossRef Raynal, L., et al.: The oscillatory instability of plane variable-density jets. Phys. Fluids. 8(4), 993–1006 (1996)MathSciNetCrossRef
45.
go back to reference Kinsler, L.E.: Fundamentals of Acoustics, 4th edn. Wiley, New York (2000)MATH Kinsler, L.E.: Fundamentals of Acoustics, 4th edn. Wiley, New York (2000)MATH
46.
go back to reference Rayleigh, J.W.S., Lindsay, R.B.: The Theory of Sound, 2nd edn. Dover Publications, New York (1945) Rayleigh, J.W.S., Lindsay, R.B.: The Theory of Sound, 2nd edn. Dover Publications, New York (1945)
47.
go back to reference Reaction Design.: Reaction Workbench 15131 San Diego (2013) Reaction Design.: Reaction Workbench 15131 San Diego (2013)
48.
go back to reference ANSYS.: ANSYS Fluent Academic Research, Release 15.0 (2015) ANSYS.: ANSYS Fluent Academic Research, Release 15.0 (2015)
49.
go back to reference Guo, H., Chen, Y.: Supercritical and subcritical Hopf bifurcation and limit cycle oscillations of an airfoil with cubic nonlinearity in supersonic\hypersonic flow. Nonlinear Dyn. 67(4), 2637–2649 (2012)MathSciNetCrossRef Guo, H., Chen, Y.: Supercritical and subcritical Hopf bifurcation and limit cycle oscillations of an airfoil with cubic nonlinearity in supersonic\hypersonic flow. Nonlinear Dyn. 67(4), 2637–2649 (2012)MathSciNetCrossRef
50.
go back to reference Biswas, S., Qiao, L.: A comprehensive statistical investigation of Schlieren Image Velocimetry (SIV) using high-velocity helium jet. Exp. Fluids. 58(3), 1–20 (2017)CrossRef Biswas, S., Qiao, L.: A comprehensive statistical investigation of Schlieren Image Velocimetry (SIV) using high-velocity helium jet. Exp. Fluids. 58(3), 1–20 (2017)CrossRef
51.
go back to reference Kundu, P.K., Cohen, I.M., Dowling, D.R.: Fluid Mechanics, vol. xxvi, 5th edn, p. 891. Academic Press, Waltham (2012)MATH Kundu, P.K., Cohen, I.M., Dowling, D.R.: Fluid Mechanics, vol. xxvi, 5th edn, p. 891. Academic Press, Waltham (2012)MATH
52.
go back to reference Westerweel, J.: Digital Particle Image Velocimetry – Theory and Application. Delft University, Delft (1993) Westerweel, J.: Digital Particle Image Velocimetry – Theory and Application. Delft University, Delft (1993)
54.
go back to reference Speziale, C.G., Sarkar, S., Gatski, T.B.: Modeling the pressure-strain correlation of turbulence - an invariant dynamical systems approach. J. Fluid Mech. 227, 245–272 (1991)CrossRef Speziale, C.G., Sarkar, S., Gatski, T.B.: Modeling the pressure-strain correlation of turbulence - an invariant dynamical systems approach. J. Fluid Mech. 227, 245–272 (1991)CrossRef
Metadata
Title
Combustion Instability at Lean Limit
Author
Sayan Biswas
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-76243-2_5

Premium Partner