Skip to main content
Top
Published in: Measurement Techniques 7/2018

27-10-2018

Comparative Analysis of the Discharge Coefficients of Critical Nozzles

Authors: Zh. А. Dayev, N. Z. Sultanov

Published in: Measurement Techniques | Issue 7/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We perform the comparative and statistical analyses of the discharge coefficients of critical nozzles with toroidal branch pipes and discuss the main approaches aimed at the evaluation of the discharge coefficients. We present the equations for the dependences used to describe the behavior of the discharge coefficients of critical nozzles as functions of the Reynolds number. By using an example of critical Venturi nozzles, we study the factors affecting the accuracy of measurements of the gas flow rate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. P. Gerasimov, V. P. Ivanov, V. M. Krasavin, et al., “The area of application of Laval nozzles in flow-rate measurement technique,” Izmer. Tekhn., No. 4, 48–52 (2005).CrossRef A. P. Gerasimov, V. P. Ivanov, V. M. Krasavin, et al., “The area of application of Laval nozzles in flow-rate measurement technique,” Izmer. Tekhn., No. 4, 48–52 (2005).CrossRef
2.
go back to reference A. P. Gerasimov, V. P. Ivanov, V. M. Krasavin, et al., “Properties of gas flows,” Izmer. Tekhn., No. 4, 40–44 (2005). A. P. Gerasimov, V. P. Ivanov, V. M. Krasavin, et al., “Properties of gas flows,” Izmer. Tekhn., No. 4, 40–44 (2005).
3.
go back to reference MI 1538–86, GSI. Critical Flowmeters. Methods of Measurements of Mass Gas Flow Rates. MI 1538–86, GSI. Critical Flowmeters. Methods of Measurements of Mass Gas Flow Rates.
4.
go back to reference ISO 9300:2005 (E), Measurement of Gas Flow by Means of Critical Flow Venturi Nozzles. ISO 9300:2005 (E), Measurement of Gas Flow by Means of Critical Flow Venturi Nozzles.
5.
go back to reference C. Wang, H. Ding, and Y. Zhao, “Influence of wall roughness on discharge coefficient of sonic nozzles,” Flow Meas. Instrum., 35, 55–62 (2014).ADSCrossRef C. Wang, H. Ding, and Y. Zhao, “Influence of wall roughness on discharge coefficient of sonic nozzles,” Flow Meas. Instrum., 35, 55–62 (2014).ADSCrossRef
6.
go back to reference B. T. Arnberg, “Review of critical flowmeters for gas flow measurements,” J. Basic Eng., No. 12, 447–457 (1962). B. T. Arnberg, “Review of critical flowmeters for gas flow measurements,” J. Basic Eng., No. 12, 447–457 (1962).
7.
go back to reference B. S. Stratford, “The calculation of the discharge coefficient of profiled choked nozzles and optimum profile for absolute air flow measurement,” J. Royal Aeron. Soc., 68, 237–245 (1964).CrossRef B. S. Stratford, “The calculation of the discharge coefficient of profiled choked nozzles and optimum profile for absolute air flow measurement,” J. Royal Aeron. Soc., 68, 237–245 (1964).CrossRef
8.
go back to reference B. T. Arnberg, C. L. Britton, and W. F. Seidl, “Discharge coefficient correlations for circular Venturi flow meters at critical (sonic) flow,” J. Fluids Eng., No. 2, 111–123 (1974).CrossRef B. T. Arnberg, C. L. Britton, and W. F. Seidl, “Discharge coefficient correlations for circular Venturi flow meters at critical (sonic) flow,” J. Fluids Eng., No. 2, 111–123 (1974).CrossRef
9.
go back to reference M. Ishibashi and M. Takamoto, “Theoretical discharge coefficient of a critical circular-arc nozzle with laminar boundary layer and its verification by measurements using super-accurate nozzles,” Flow Meas. Instrum., 11, 305–313 (2000).CrossRef M. Ishibashi and M. Takamoto, “Theoretical discharge coefficient of a critical circular-arc nozzle with laminar boundary layer and its verification by measurements using super-accurate nozzles,” Flow Meas. Instrum., 11, 305–313 (2000).CrossRef
10.
go back to reference K. A. Park, “Effects of inlet shapes of critical Venturi nozzles on discharge coefficients. Flomeko,” in: Proc. 10th IMEKO TC9 Conf. on Flow Measurement (2000), pp. 15–19.CrossRef K. A. Park, “Effects of inlet shapes of critical Venturi nozzles on discharge coefficients. Flomeko,” in: Proc. 10th IMEKO TC9 Conf. on Flow Measurement (2000), pp. 15–19.CrossRef
11.
go back to reference J. A. Cruz-Maya, F. Sanchez-Silva, and P. Quinto-Diez, “A new correlation to determine the discharge coefficient of a critical Venturi nozzle with turbulent boundary layer,” Flow Meas. Instrum., 17, 258–266 (2006).CrossRef J. A. Cruz-Maya, F. Sanchez-Silva, and P. Quinto-Diez, “A new correlation to determine the discharge coefficient of a critical Venturi nozzle with turbulent boundary layer,” Flow Meas. Instrum., 17, 258–266 (2006).CrossRef
12.
go back to reference Y. M. Choi, K. M. Park, and S. O. Park, “Interference effect between sonic nozzles,” Flow Meas. Instrum., 8, 113–119 (1997).CrossRef Y. M. Choi, K. M. Park, and S. O. Park, “Interference effect between sonic nozzles,” Flow Meas. Instrum., 8, 113–119 (1997).CrossRef
13.
go back to reference M. Ishibashi, “Discharge coefficient equation for critical-flow toroidal-throat Venturi nozzles covering the boundary-layer transition regime,” Flow Meas. Instrum., 44, 107–121 (2015).CrossRef M. Ishibashi, “Discharge coefficient equation for critical-flow toroidal-throat Venturi nozzles covering the boundary-layer transition regime,” Flow Meas. Instrum., 44, 107–121 (2015).CrossRef
14.
go back to reference C. H. Li, X. F. Peng, and C. Wang, “Influence of diffuser angle on discharge coefficient of sonic nozzles for flow-rate measurements,” Flow Meas. Instrum., 21, 531–537 (2010).CrossRef C. H. Li, X. F. Peng, and C. Wang, “Influence of diffuser angle on discharge coefficient of sonic nozzles for flow-rate measurements,” Flow Meas. Instrum., 21, 531–537 (2010).CrossRef
15.
go back to reference H. Ding, C. Wang, and Y. Zhao, “Surface roughness effect on flow measurement of real gas in a critical nozzle,” Measurement, 68, 82–91 (2015).CrossRef H. Ding, C. Wang, and Y. Zhao, “Surface roughness effect on flow measurement of real gas in a critical nozzle,” Measurement, 68, 82–91 (2015).CrossRef
16.
go back to reference N. Bignell and Y. M. Choi, “Thermal effects in small sonic nozzles,” Flow Meas. Instrum., 13, 17–22 (2002).CrossRef N. Bignell and Y. M. Choi, “Thermal effects in small sonic nozzles,” Flow Meas. Instrum., 13, 17–22 (2002).CrossRef
17.
go back to reference D. G. Steward, J. T. R. Watson, and A. M. Vaidya, “Improved critical flow factors and representative equations for four calibration gases,” Flow Meas. Instrum., 10, 27–41 (1999).CrossRef D. G. Steward, J. T. R. Watson, and A. M. Vaidya, “Improved critical flow factors and representative equations for four calibration gases,” Flow Meas. Instrum., 10, 27–41 (1999).CrossRef
Metadata
Title
Comparative Analysis of the Discharge Coefficients of Critical Nozzles
Authors
Zh. А. Dayev
N. Z. Sultanov
Publication date
27-10-2018
Publisher
Springer US
Published in
Measurement Techniques / Issue 7/2018
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-018-1490-6

Other articles of this Issue 7/2018

Measurement Techniques 7/2018 Go to the issue