Skip to main content
Top

2013 | OriginalPaper | Chapter

12. Comparative Genomics of Thermophilic Bacteria and Archaea

Authors : Satoshi Akanuma, Shin-ichi Yokobori, Akihiko Yamagishi

Published in: Thermophilic Microbes in Environmental and Industrial Biotechnology

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Elucidation of the origin and the early evolution of life is fundamental to our understanding of ancient living systems and of the ancient global environment where early life evolved. A number of molecular phylogenetic trees have been constructed by comparing the homologous gene sequences.
In this chapter, we have reviewed the universal trees constructed based on different types of genetic information. The tree topology was different depending on the type of the gene analyzed as well as the method used. The root of the universal tree is most likely placed between the bacterial branch and the common ancestor of Archaea and Eucarya. However, there are possibilities that the root may be within the bacterial branches.
Monophyly of Archaea is rather controversial. Though the rRNA tree suggested the monophyly, other types of the tree are also reported. The conclusive result where the Eucarya originated within/outside of the branch of Archaea is yet to come.
The growth temperature of the ancient organism has long been a topic that has interested many scientists. Theoretical works suggested mesophilic, thermophilic, and hyperthermophilic origin of life, depending on the report. Experimental test analyzing the effect of each or combination of ancestral amino acid residues suggested the hyperthermophilic origin of life. However, we cannot totally deny the possible artifact based on the method used for the estimation of ancestral sequences possessed by the ancestral organisms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akanuma S, Iwami S, Yokoi T, Nakamura N, Watanabe H, Yokobori S, Yamagishi A (2011) J Mol Biol 412:212–225 Akanuma S, Iwami S, Yokoi T, Nakamura N, Watanabe H, Yokobori S, Yamagishi A (2011) J Mol Biol 412:212–225
go back to reference Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UC, Podowski RM, Näslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) Nature 396:133–140PubMedCrossRef Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UC, Podowski RM, Näslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) Nature 396:133–140PubMedCrossRef
go back to reference Cavalier-Smith T (2002) Int J Systematic Evol Microbiol 52:7–76 Cavalier-Smith T (2002) Int J Systematic Evol Microbiol 52:7–76
go back to reference Declais AC, Marsault J, Confalonieri F, de La Tour CB, Duguet M (2000) J Biol Chem 275:19498–19504PubMedCrossRef Declais AC, Marsault J, Confalonieri F, de La Tour CB, Duguet M (2000) J Biol Chem 275:19498–19504PubMedCrossRef
go back to reference Gaucher EA, Kratzer JT, Randall RN (2010) Spring Harb Perspect Biol 2:a002238CrossRef Gaucher EA, Kratzer JT, Randall RN (2010) Spring Harb Perspect Biol 2:a002238CrossRef
go back to reference Gogarten JP, Kibak H, Ditrrich P, Taiz L, Bowman EJ, Bowman BJ, Manolsono MF, Poole RJ, Date T, Oshima T, Konishi J, Dendai K, Yoshida M (1989) Proc Natl Acad Sci USA 86:6661–6665PubMedCrossRef Gogarten JP, Kibak H, Ditrrich P, Taiz L, Bowman EJ, Bowman BJ, Manolsono MF, Poole RJ, Date T, Oshima T, Konishi J, Dendai K, Yoshida M (1989) Proc Natl Acad Sci USA 86:6661–6665PubMedCrossRef
go back to reference Hara F, Yamashiro K, Nemoto N, Ohta Y, Yokobori S, Yasunaga T, Hisanaga S, Yamagishi A (2007) J Bacteriol 189:2039–2045PubMedCrossRef Hara F, Yamashiro K, Nemoto N, Ohta Y, Yokobori S, Yasunaga T, Hisanaga S, Yamagishi A (2007) J Bacteriol 189:2039–2045PubMedCrossRef
go back to reference Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Proc Natl Acd Sci USA 86:9355–9359CrossRef Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Proc Natl Acd Sci USA 86:9355–9359CrossRef
go back to reference Jukes TH, Cantor CR (1969) In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132 Jukes TH, Cantor CR (1969) In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132
go back to reference Koyama Y, Hoshino T, Tomizuka N, Furukawa K (1986) J Bacteriol 166:338–340PubMed Koyama Y, Hoshino T, Tomizuka N, Furukawa K (1986) J Bacteriol 166:338–340PubMed
go back to reference Lake JA, Skophammer RG, Herbold CW, Servin JA (2009) Philos Trans R Soc Lond B Biol Sci 364:2177–2185PubMedCrossRef Lake JA, Skophammer RG, Herbold CW, Servin JA (2009) Philos Trans R Soc Lond B Biol Sci 364:2177–2185PubMedCrossRef
go back to reference Lehmann M, Kostrewa D, Wyss M, Brugger R, D’Arcy A, Pasamontes L, van Loon AP (2000) Protein Eng 13:49–57PubMedCrossRef Lehmann M, Kostrewa D, Wyss M, Brugger R, D’Arcy A, Pasamontes L, van Loon AP (2000) Protein Eng 13:49–57PubMedCrossRef
go back to reference Lehmann M, Loch C, Middendorf A, Studer D, Lassen SF, Pasamontes L, van Loon AP, Wyss M (2002) Protein Eng 15:403–411PubMedCrossRef Lehmann M, Loch C, Middendorf A, Studer D, Lassen SF, Pasamontes L, van Loon AP, Wyss M (2002) Protein Eng 15:403–411PubMedCrossRef
go back to reference Martin W (2005) Archaebacteria (archaea) ant the origin of the eukaryotic nucleus. Curr Opin Microbiol 8:630–637PubMedCrossRef Martin W (2005) Archaebacteria (archaea) ant the origin of the eukaryotic nucleus. Curr Opin Microbiol 8:630–637PubMedCrossRef
go back to reference Miyazaki J, Nakaya S, Suzuki T, Tamakoshi M, Oshima T, Yamagishi A (2001) J Biochem (Tokyo) 129:777–782CrossRef Miyazaki J, Nakaya S, Suzuki T, Tamakoshi M, Oshima T, Yamagishi A (2001) J Biochem (Tokyo) 129:777–782CrossRef
go back to reference Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Nature 399:323–329PubMedCrossRef Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Nature 399:323–329PubMedCrossRef
go back to reference Rodríguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Curr Biol 15:1325–1330PubMedCrossRef Rodríguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Curr Biol 15:1325–1330PubMedCrossRef
go back to reference Saito K, Kobayashi K, Wada M, Kikuno I, Takusagawa A, Mochizuki M, Uchiumi T, Ishitani R, Nureki O, Ito K (2010) Proc Natl Acad Sci USA 107:19242–19247PubMedCrossRef Saito K, Kobayashi K, Wada M, Kikuno I, Takusagawa A, Mochizuki M, Uchiumi T, Ishitani R, Nureki O, Ito K (2010) Proc Natl Acad Sci USA 107:19242–19247PubMedCrossRef
go back to reference Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechika I, Okada N (1997) Nature 388:666–670PubMedCrossRef Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechika I, Okada N (1997) Nature 388:666–670PubMedCrossRef
go back to reference Shimizu H, Yokobori S, Ohkuri T, Yokogawa T, Nishikawa K, Yamagishi A (2007) J Mol Biol 369:1060–1069PubMedCrossRef Shimizu H, Yokobori S, Ohkuri T, Yokogawa T, Nishikawa K, Yamagishi A (2007) J Mol Biol 369:1060–1069PubMedCrossRef
go back to reference Suematsu T, Yokobori S, Morita H, Yoshinari S, Ueda T, Kita K, Takeuchi N, Watanabe Y (2010) Mol Microbiol 75:1445–1454PubMedCrossRef Suematsu T, Yokobori S, Morita H, Yoshinari S, Ueda T, Kita K, Takeuchi N, Watanabe Y (2010) Mol Microbiol 75:1445–1454PubMedCrossRef
go back to reference Thomson JM, Gaucher EA, Burgan MF, De Kee DW, Li T, Aris JP, Benner SA (2005) Nat Genet 37:630–635PubMedCrossRef Thomson JM, Gaucher EA, Burgan MF, De Kee DW, Li T, Aris JP, Benner SA (2005) Nat Genet 37:630–635PubMedCrossRef
go back to reference Wang M, Yafremava LS, Caetano-Anollés D, Mittenthal JE, Caetano-Anollés G (2007) Genome Res 17:1572–1585PubMedCrossRef Wang M, Yafremava LS, Caetano-Anollés D, Mittenthal JE, Caetano-Anollés G (2007) Genome Res 17:1572–1585PubMedCrossRef
go back to reference Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Söll D, Stetter KO, Short JM, Noordewier M (2003) Proc Natl Acad Sci USA 100:12984–12988PubMedCrossRef Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Söll D, Stetter KO, Short JM, Noordewier M (2003) Proc Natl Acad Sci USA 100:12984–12988PubMedCrossRef
go back to reference Yamagishi A, Kon T, Takahashi G, Oshima T (1998) In: Wiegel J, Adams M (eds) Thermophiles: the keys to molecular evolution and the origin of life? Taylor & Francis, London, pp 287–295 Yamagishi A, Kon T, Takahashi G, Oshima T (1998) In: Wiegel J, Adams M (eds) Thermophiles: the keys to molecular evolution and the origin of life? Taylor & Francis, London, pp 287–295
go back to reference Yutin N, Makarova KS, Mekhedov SL, Wolf YI, Koonin EV (2008) The deep archaeal roots of eukaryotes. Mol Biol Evol 25:1619–1630PubMedCrossRef Yutin N, Makarova KS, Mekhedov SL, Wolf YI, Koonin EV (2008) The deep archaeal roots of eukaryotes. Mol Biol Evol 25:1619–1630PubMedCrossRef
go back to reference Zavialov AV, Hauryliuk VV, Ehrenberg M (2005) Splitting of the posttermination ribosome into subunits by the concerted action of RRF and EF-G. Mol Cell 18:675–686PubMedCrossRef Zavialov AV, Hauryliuk VV, Ehrenberg M (2005) Splitting of the posttermination ribosome into subunits by the concerted action of RRF and EF-G. Mol Cell 18:675–686PubMedCrossRef
Metadata
Title
Comparative Genomics of Thermophilic Bacteria and Archaea
Authors
Satoshi Akanuma
Shin-ichi Yokobori
Akihiko Yamagishi
Copyright Year
2013
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-5899-5_12