Skip to main content
Top
Published in: Electrical Engineering 3/2022

23-08-2021 | Original Paper

Comparative study of rotor PM transverse flux machine and stator PM transverse flux machine with SMC cores

Authors: Chengcheng Liu, Xue Wang, Youhua Wang, Gang Lei, Youguang Guo, Jianguo Zhu

Published in: Electrical Engineering | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the adoption of 3D magnetic flux material and global ring windings, permanent magnet transverse flux machine (PMTFM) with soft magnetic composite cores can output relatively high torque density and only requires easy manufacturing process. For the PMTFM, there are two ways to put the permanent magnets (PMs). One is to put the PMs on the rotor side which is the traditional rotor PM TFM and the other is to put the PMs on the stator side which is the stator PM TFM. In this paper, the design methods and operation principle for both kinds of PMTFM will be presented and discussed. Four different TFMs (benchmark rotor PM TFM with NdFeB, stator PM TFM1 with ferrite magnet and stator PM TFM2 and TFM3 with NdFeB) have been designed, and the magnetic parameters and the main performance will be comparatively studied to show the main difference between stator PM TFM and rotor PM TFM. It can be seen that the stator PM TFM has better performance, and the stator PM TFM1 with ferrite magnets can have the same torque ability as that of the rotor PM TFM with NdFeB magnet but with very low material cost. With the adoption of NdFeB, the stator PM TFM2 can have two times higher torque ability than the rotor PM TFM, and the stator PM TFM2 can have the same torque ability as that of rotor PM TFM but with much smaller volume. As for the power factor and efficiency, it can be seen that the adoption of ferrite magnet will reduce both of them, and there is no much difference for the place where the PMs are installed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Krings A, Boglietti A, Cavagnino A, Sprague S (2017) Soft magnetic material status and trends in electric machines. IEEE Trans Ind Electron 64(3):2405–2414CrossRef Krings A, Boglietti A, Cavagnino A, Sprague S (2017) Soft magnetic material status and trends in electric machines. IEEE Trans Ind Electron 64(3):2405–2414CrossRef
2.
go back to reference Schoppa A, Delarbre P (2014) Soft magnetic powder composites and potential applications in modern electric machines and devices. IEEE Trans Magn 50(4):2004304CrossRef Schoppa A, Delarbre P (2014) Soft magnetic powder composites and potential applications in modern electric machines and devices. IEEE Trans Magn 50(4):2004304CrossRef
3.
go back to reference Potgieter J, Fernandez F, Fraser A, Mcculloch M (2017) Effects observed in the characterization of soft magnetic composite for high frequency, high flux density applications. IEEE Trans Ind Electron 64(3):2486–2493CrossRef Potgieter J, Fernandez F, Fraser A, Mcculloch M (2017) Effects observed in the characterization of soft magnetic composite for high frequency, high flux density applications. IEEE Trans Ind Electron 64(3):2486–2493CrossRef
4.
go back to reference Zhu JG, Guo YG, Lin ZW, Li YJ, Huang YK (2011) Development of PM transverse flux motors with soft magnetic composite cores. IEEE Trans Magn 47(10):4376–4383CrossRef Zhu JG, Guo YG, Lin ZW, Li YJ, Huang YK (2011) Development of PM transverse flux motors with soft magnetic composite cores. IEEE Trans Magn 47(10):4376–4383CrossRef
5.
go back to reference Jack AG (2000) Permanent magnet machines with powdered iron cores and prepressed windings. IEEE Trans Ind Appl 48(11):1077–1084CrossRef Jack AG (2000) Permanent magnet machines with powdered iron cores and prepressed windings. IEEE Trans Ind Appl 48(11):1077–1084CrossRef
6.
go back to reference Guo YG, Zhu JG, Watterson PA, Wu W (2006) Development of a PM transverse flux motor with soft magnetic composite core. IEEE Trans Energy Convers 21(2):426–434CrossRef Guo YG, Zhu JG, Watterson PA, Wu W (2006) Development of a PM transverse flux motor with soft magnetic composite core. IEEE Trans Energy Convers 21(2):426–434CrossRef
7.
go back to reference Liu CC, Lei G, Wang TS, Guo YG, Wang YH, Zhu JG (2017) Comparative study of small electrical machines with soft magnetic composite cores. IEEE Trans Ind Electron 64(2):1049–1060CrossRef Liu CC, Lei G, Wang TS, Guo YG, Wang YH, Zhu JG (2017) Comparative study of small electrical machines with soft magnetic composite cores. IEEE Trans Ind Electron 64(2):1049–1060CrossRef
8.
go back to reference Zhang B, Seidler T, Dierken R, Doppelbauer M (2016) Development of a yokeless and segmented armature axial flux machine. IEEE Trans Ind Electron 63(4):2062–2071 Zhang B, Seidler T, Dierken R, Doppelbauer M (2016) Development of a yokeless and segmented armature axial flux machine. IEEE Trans Ind Electron 63(4):2062–2071
9.
go back to reference Doering J, Steinborn G, Hodman W (2015) Torque, power, losses, and heat calculation of a transverse flux reluctance machine with soft magnetic composite materials and disk shaped rotor. IEEE Trans Ind Appl 51(2):1494–1504CrossRef Doering J, Steinborn G, Hodman W (2015) Torque, power, losses, and heat calculation of a transverse flux reluctance machine with soft magnetic composite materials and disk shaped rotor. IEEE Trans Ind Appl 51(2):1494–1504CrossRef
10.
go back to reference Washington J, Atkinson J et al (2012) Three phase modulated pole machine topologies utilizing mutual flux paths. IEEE Trans Energy Convers 27(2):507–515CrossRef Washington J, Atkinson J et al (2012) Three phase modulated pole machine topologies utilizing mutual flux paths. IEEE Trans Energy Convers 27(2):507–515CrossRef
11.
go back to reference Kwon YS, Kim WJ (2017) Electromagnetic analysis and steady-state performance of double sided flat linear motor using soft magnetic composite. IEEE Trans Ind Electron 64(3):2178–2187CrossRef Kwon YS, Kim WJ (2017) Electromagnetic analysis and steady-state performance of double sided flat linear motor using soft magnetic composite. IEEE Trans Ind Electron 64(3):2178–2187CrossRef
12.
go back to reference Ishikawa T, Takahashi K, Viet HQ, Matsunami M, Kurita N (2012) Analysis of novel brushless DC motors made of soft magnetic composite core. IEEE Trans Magn 48(11):971–974CrossRef Ishikawa T, Takahashi K, Viet HQ, Matsunami M, Kurita N (2012) Analysis of novel brushless DC motors made of soft magnetic composite core. IEEE Trans Magn 48(11):971–974CrossRef
13.
go back to reference Anglada JR, Sharkh SM (2015) An insight into torque production and power factor in transverse flux machines. IEEE Trans Ind Appl 53(3):1971–1977CrossRef Anglada JR, Sharkh SM (2015) An insight into torque production and power factor in transverse flux machines. IEEE Trans Ind Appl 53(3):1971–1977CrossRef
14.
go back to reference Husain T, Hasan I, Sozer Y, Husain I, Uuljadi E (2018) Design considerations of a transvers flux machine for direct dirve wind turbine applications. IEEE Trans Ind Appl 54(4):3604–3615CrossRef Husain T, Hasan I, Sozer Y, Husain I, Uuljadi E (2018) Design considerations of a transvers flux machine for direct dirve wind turbine applications. IEEE Trans Ind Appl 54(4):3604–3615CrossRef
15.
go back to reference Ahmed A, Husain I (2018) Power factor improment of a transverse flux machine with high torque density. IEEE Trans Ind Appl 54(5):4297–4305CrossRef Ahmed A, Husain I (2018) Power factor improment of a transverse flux machine with high torque density. IEEE Trans Ind Appl 54(5):4297–4305CrossRef
16.
go back to reference Guo YG, Zhu JG, Dorrell DG (2009) Design and analysis of a claw pole permanent magnet motor with molded soft magnetic composite core. IEEE Trans Magn 45(10):4582–4585CrossRef Guo YG, Zhu JG, Dorrell DG (2009) Design and analysis of a claw pole permanent magnet motor with molded soft magnetic composite core. IEEE Trans Magn 45(10):4582–4585CrossRef
17.
go back to reference Li X, Xu W, Ye CY, Boldea I (2018) Comparative study of transverse flux permanent magnetic linear oscillatory machines for compressor. IEEE Trans Ind Electron 65(9):437–7446 Li X, Xu W, Ye CY, Boldea I (2018) Comparative study of transverse flux permanent magnetic linear oscillatory machines for compressor. IEEE Trans Ind Electron 65(9):437–7446
18.
go back to reference Wang MQ, Zheng P, Tong CD, Zhao QB, Qiao GY (2019) Research on a transverse flux brushelss double rotor machine for hybrid electric vehicles. IEEE Trans Ind Electron 66(2):1032–1043CrossRef Wang MQ, Zheng P, Tong CD, Zhao QB, Qiao GY (2019) Research on a transverse flux brushelss double rotor machine for hybrid electric vehicles. IEEE Trans Ind Electron 66(2):1032–1043CrossRef
19.
go back to reference Zhao M, Wei Y, Wang HY, Hu MM, Han FJ et al (2019) Development and analysis of novel flux switching transverse flux permanent magnet linear machine. IEEE Trans Ind Electron 66(6):4923–4933CrossRef Zhao M, Wei Y, Wang HY, Hu MM, Han FJ et al (2019) Development and analysis of novel flux switching transverse flux permanent magnet linear machine. IEEE Trans Ind Electron 66(6):4923–4933CrossRef
20.
go back to reference Zhao X, Niu SX (2019) Development of a novel transverse flux tubular linear machine with parallel and complementary PM magnetic circuit for precision industrial processing. IEEE Trans Ind Electron 66(6):4945–4955CrossRef Zhao X, Niu SX (2019) Development of a novel transverse flux tubular linear machine with parallel and complementary PM magnetic circuit for precision industrial processing. IEEE Trans Ind Electron 66(6):4945–4955CrossRef
21.
go back to reference Husain T, Hasan I, Sozer Y, Husain I, Uuljadi E (2019) Cogging torque minzation in transverse flux machines. IEEE Trans Ind Appl 55(1):385–397CrossRef Husain T, Hasan I, Sozer Y, Husain I, Uuljadi E (2019) Cogging torque minzation in transverse flux machines. IEEE Trans Ind Appl 55(1):385–397CrossRef
22.
go back to reference Ma B, Lei G, Zhu JG, Guo YG, Liu CC (2018) Application-oriented robust design optimization for batch production of permanent magnet motors. IEEE Trans Ind Electron 65(2):1728–1739CrossRef Ma B, Lei G, Zhu JG, Guo YG, Liu CC (2018) Application-oriented robust design optimization for batch production of permanent magnet motors. IEEE Trans Ind Electron 65(2):1728–1739CrossRef
23.
go back to reference Lei G, Wang TS, Guo YG, Zhu JG, Wang SH (2014) System level design optimization methods for electrical drive systems: deterministic approach. IEEE Trans Ind Electron 61(12):6591–6602CrossRef Lei G, Wang TS, Guo YG, Zhu JG, Wang SH (2014) System level design optimization methods for electrical drive systems: deterministic approach. IEEE Trans Ind Electron 61(12):6591–6602CrossRef
24.
go back to reference Liu CC, Zhu JG, Wang YH et al (2017) Development of a new low cost 3-D flux transverse flux FSPMM with soft magnetic composite cores and ferrite magnets. IEEE Trans Magn 53(11):8109805 Liu CC, Zhu JG, Wang YH et al (2017) Development of a new low cost 3-D flux transverse flux FSPMM with soft magnetic composite cores and ferrite magnets. IEEE Trans Magn 53(11):8109805
Metadata
Title
Comparative study of rotor PM transverse flux machine and stator PM transverse flux machine with SMC cores
Authors
Chengcheng Liu
Xue Wang
Youhua Wang
Gang Lei
Youguang Guo
Jianguo Zhu
Publication date
23-08-2021
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 3/2022
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-021-01363-w

Other articles of this Issue 3/2022

Electrical Engineering 3/2022 Go to the issue