Skip to main content
Top
Published in: Metals and Materials International 9/2021

27-03-2020

Comparative Study on Microstructure and Aluminum Distribution Between Laser Beam Welding and Electron Beam Welding of Ti–6Al–4V Alloy Plates

Authors: Hengchang Bu, Qiyu Gao, Yun Li, Feiyun Wang, Xiaohong Zhan

Published in: Metals and Materials International | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ti–6Al–4V alloy plates with a thickness of 4 mm were joined by electron beam welding (EBW) and laser beam welding (LBW). The comparison of LBW and EBW was performed according to grain morphology, microstructure, aluminum distribution, and microhardness of the joints. Results indicate that compared with LBW joint, more equiaxed grains are observed around the central zone of the EBW joint. The microstructure in fusion zone (FZ) of EBW joint presents more uneven with obviously coarser acicular martensite α′. Moreover, the aluminum element content of EBW joint is substantially lower, which demonstrates a more significant burning loss behavior in EBW process. The lower aluminum content in the upper center areas of the joints is attributed to the more significant element burning loss caused by higher temperature, whereas more uniform aluminum distribution in the upper part of the joints is ascribed to stronger convection form within the upper part of the joint. In addition, the characteristics of convection and thermal field within the molten pool are recognized as vital factors influencing the aluminum distribution. The lower microhardness profile in FZ of the EBW joint is principally attributed to coarser acicular martensite α′ and lower aluminum element in EBW joint.

Graphic Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Leyens, M. Peters, Titanium and Titanium Alloys (Wiley, Weinheim, 2003) C. Leyens, M. Peters, Titanium and Titanium Alloys (Wiley, Weinheim, 2003)
2.
go back to reference H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications. Mater. Sci. Eng., C 26, 1269–1277 (2006) H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications. Mater. Sci. Eng., C 26, 1269–1277 (2006)
3.
go back to reference M.M. Dewidar, H.C. Yoon, J.K. Lim, Mechanical properties of metals for biomedical applications using powder metallurgy process: a review. Met. Mater. Int. 12, 193–206 (2006) M.M. Dewidar, H.C. Yoon, J.K. Lim, Mechanical properties of metals for biomedical applications using powder metallurgy process: a review. Met. Mater. Int. 12, 193–206 (2006)
5.
go back to reference K. Yonesawa, Welding of titanium and titanium alloys. Weld. Int. 1, 1131–1142 (1987) K. Yonesawa, Welding of titanium and titanium alloys. Weld. Int. 1, 1131–1142 (1987)
6.
go back to reference N. Kahraman, The influence of welding parameters on the joint strength of resistance spot-welded titanium sheets. Mater. Des. 28, 420–427 (2007) N. Kahraman, The influence of welding parameters on the joint strength of resistance spot-welded titanium sheets. Mater. Des. 28, 420–427 (2007)
7.
go back to reference A.B. Short, Gas tungsten arc welding of α + β titanium alloys: a review. Mater. Sci. Technol. 25, 309–324 (2009) A.B. Short, Gas tungsten arc welding of α + β titanium alloys: a review. Mater. Sci. Technol. 25, 309–324 (2009)
8.
go back to reference K. Gangwar, M. Ramulu, Friction stir welding of titanium alloys: a review. Mater. Des. 141, 230–255 (2018) K. Gangwar, M. Ramulu, Friction stir welding of titanium alloys: a review. Mater. Des. 141, 230–255 (2018)
9.
go back to reference D.H. Won, T.S. Bae, S. Ohkawa, F. Watari, The influence of output current on the tensile strength of laser-welded titanium joints. Met. Mater. Int. 9, 493–496 (2003) D.H. Won, T.S. Bae, S. Ohkawa, F. Watari, The influence of output current on the tensile strength of laser-welded titanium joints. Met. Mater. Int. 9, 493–496 (2003)
10.
go back to reference M.I. Utama, N. Park, E.R. Baek, Microstructure and mechanical features of electron beam welded dissimilar titanium alloys: Ti–10 V–2Fe–3Al and Ti–6Al–4V. Met. Mater. Int. 25, 439–448 (2019) M.I. Utama, N. Park, E.R. Baek, Microstructure and mechanical features of electron beam welded dissimilar titanium alloys: Ti–10 V–2Fe–3Al and Ti–6Al–4V. Met. Mater. Int. 25, 439–448 (2019)
11.
go back to reference A. Squillace, U. Prisco, S. Ciliberto, A. Astarita, Effect of welding parameters on morphology and mechanical properties of Ti–6Al–4V laser beam welded butt joints. J. Mater. Process. Technol. 212, 427–436 (2012) A. Squillace, U. Prisco, S. Ciliberto, A. Astarita, Effect of welding parameters on morphology and mechanical properties of Ti–6Al–4V laser beam welded butt joints. J. Mater. Process. Technol. 212, 427–436 (2012)
12.
go back to reference X. Yang, S. Li, H. Qi, Ti–6Al–4V welded joints via electron beam welding: microstructure, fatigue properties, and fracture behavior. Mater. Sci. Eng., A 597, 225–231 (2014) X. Yang, S. Li, H. Qi, Ti–6Al–4V welded joints via electron beam welding: microstructure, fatigue properties, and fracture behavior. Mater. Sci. Eng., A 597, 225–231 (2014)
13.
go back to reference E. Akman, A. Demir, T. Canel, T. Sınmazçelik, Laser welding of Ti6Al4 V titanium alloys. J. Mater. Process. Technol. 209, 3705–3713 (2009) E. Akman, A. Demir, T. Canel, T. Sınmazçelik, Laser welding of Ti6Al4 V titanium alloys. J. Mater. Process. Technol. 209, 3705–3713 (2009)
14.
go back to reference S. Wang, M. Wei, L. Tsay, Tensile properties of LBW welds in Ti–6Al–4V alloy at evaluated temperatures below 450°C. Mater. Lett. 57, 1815–1823 (2003) S. Wang, M. Wei, L. Tsay, Tensile properties of LBW welds in Ti–6Al–4V alloy at evaluated temperatures below 450°C. Mater. Lett. 57, 1815–1823 (2003)
15.
go back to reference X.L. Gao, L.J. Zhang, J. Liu, J.X. Zhang, A comparative study of pulsed Nd: YAG laser welding and TIG welding of thin Ti6Al4 V titanium alloy plate. Mater. Sci. Eng., A 559, 14–21 (2013) X.L. Gao, L.J. Zhang, J. Liu, J.X. Zhang, A comparative study of pulsed Nd: YAG laser welding and TIG welding of thin Ti6Al4 V titanium alloy plate. Mater. Sci. Eng., A 559, 14–21 (2013)
16.
go back to reference J.E. Blackburn, C.M. Allen, P.A. Hilton, L. Li, M.I. Hoque, A.H. Khan, Modulated Nd: YAG laser welding of Ti–6Al–4V. Sci. Technol. Weld. Join. 15, 433–439 (2010) J.E. Blackburn, C.M. Allen, P.A. Hilton, L. Li, M.I. Hoque, A.H. Khan, Modulated Nd: YAG laser welding of Ti–6Al–4V. Sci. Technol. Weld. Join. 15, 433–439 (2010)
17.
go back to reference J. Yang, S. Sun, M. Brandt, W. Yan, Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4 V alloy. J. Mater. Process. Technol. 210, 2215–2222 (2010) J. Yang, S. Sun, M. Brandt, W. Yan, Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4 V alloy. J. Mater. Process. Technol. 210, 2215–2222 (2010)
18.
go back to reference N. Saresh, M.G. Pillai, J. Mathew, Investigations into the effects of electron beam welding on thick Ti–6Al–4V titanium alloy. J. Mater. Process. Technol. 192–193, 83–88 (2007) N. Saresh, M.G. Pillai, J. Mathew, Investigations into the effects of electron beam welding on thick Ti–6Al–4V titanium alloy. J. Mater. Process. Technol. 192–193, 83–88 (2007)
19.
go back to reference N.K. Babu, S.G.S. Raman, C.V.S. Murthy, G.M. Reddy, Effect of beam oscillation on fatigue life of Ti–6Al–4V electron beam weldments. Mater. Sci. Eng., A 471, 113–119 (2007) N.K. Babu, S.G.S. Raman, C.V.S. Murthy, G.M. Reddy, Effect of beam oscillation on fatigue life of Ti–6Al–4V electron beam weldments. Mater. Sci. Eng., A 471, 113–119 (2007)
20.
go back to reference S. Wang, X. Wu, Investigation on the microstructure and mechanical properties of Ti–6Al–4V alloy joints with electron beam welding. Mater. Des. 36, 663–670 (2012) S. Wang, X. Wu, Investigation on the microstructure and mechanical properties of Ti–6Al–4V alloy joints with electron beam welding. Mater. Des. 36, 663–670 (2012)
21.
go back to reference W. Lu, Y. Shi, Y. Lei, X. Li, Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy. Mater. Des. 34, 509–515 (2012) W. Lu, Y. Shi, Y. Lei, X. Li, Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy. Mater. Des. 34, 509–515 (2012)
22.
go back to reference Y. Qi, J. Deng, Q. Hong, L. Zeng, Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Mater. Sci. Eng., A 280, 177–181 (2000) Y. Qi, J. Deng, Q. Hong, L. Zeng, Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Mater. Sci. Eng., A 280, 177–181 (2000)
23.
go back to reference T. Pasang, J.M.S. Amaya, Y. Tao, M.R. Amaya-Vazquez, F.J. Botana, J.C. Sabol, W.Z. Misiolek, O. Kamiya, Comparison of Ti–5Al–5 V–5Mo–3Cr welds performed by laser beam, electron beam and gas tungsten arc welding. Procedia Eng. 63, 397–404 (2013) T. Pasang, J.M.S. Amaya, Y. Tao, M.R. Amaya-Vazquez, F.J. Botana, J.C. Sabol, W.Z. Misiolek, O. Kamiya, Comparison of Ti–5Al–5 V–5Mo–3Cr welds performed by laser beam, electron beam and gas tungsten arc welding. Procedia Eng. 63, 397–404 (2013)
24.
go back to reference X. Zhan, J. Chen, J. Liu, Y. Wei, J. Zhou, Y. Meng, Microstructure and magnesium burning loss behavior of AA6061 electron beam welding joints. Mater. Des. 99, 449–458 (2016) X. Zhan, J. Chen, J. Liu, Y. Wei, J. Zhou, Y. Meng, Microstructure and magnesium burning loss behavior of AA6061 electron beam welding joints. Mater. Des. 99, 449–458 (2016)
25.
go back to reference J. Zhang, R. Hu, S. Pang, A. Huang, Distribution of Al element of Ti–6Al–4V joints by fiber laser welding. Coatings 9, 566 (2019) J. Zhang, R. Hu, S. Pang, A. Huang, Distribution of Al element of Ti–6Al–4V joints by fiber laser welding. Coatings 9, 566 (2019)
26.
go back to reference C. Panwisawas, B. Perumal, R.M. Ward, N. Turner, R.P. Turner, J.W. Brooks, H.C. Basoalto, Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: experimental and modeling. Acta Mater. 126, 251–263 (2017) C. Panwisawas, B. Perumal, R.M. Ward, N. Turner, R.P. Turner, J.W. Brooks, H.C. Basoalto, Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: experimental and modeling. Acta Mater. 126, 251–263 (2017)
27.
go back to reference N. Kashaev, V. Ventzke, V. Fomichev, F. Fomin, S. Riekehr, Effect of Nd: YAG laser beam welding on weld morphology and mechanical properties of Ti–6Al–4V butt joints and T-joints. Opt. Lasers Eng. 86, 172–180 (2016) N. Kashaev, V. Ventzke, V. Fomichev, F. Fomin, S. Riekehr, Effect of Nd: YAG laser beam welding on weld morphology and mechanical properties of Ti–6Al–4V butt joints and T-joints. Opt. Lasers Eng. 86, 172–180 (2016)
28.
go back to reference T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, H.M. Wang, Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing. J. Alloys Compd. 632, 505–513 (2015) T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, H.M. Wang, Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing. J. Alloys Compd. 632, 505–513 (2015)
29.
go back to reference X. Zhan, H. Bu, Q. Gao, T. Yan, W. Ling, Temperature field simulation and grain morphology on laser welding-brazing between Ti–6Al–4V and 1050 aluminum alloy. Mater. Res. Express. 6, 056551 (2019) X. Zhan, H. Bu, Q. Gao, T. Yan, W. Ling, Temperature field simulation and grain morphology on laser welding-brazing between Ti–6Al–4V and 1050 aluminum alloy. Mater. Res. Express. 6, 056551 (2019)
30.
go back to reference G. Li, M. Gao, C. Chen, C. Zhang, X.Y. Zeng, Characterisation comparison of laser and laser–arc hybrid welding of Invar 36 alloy. Sci. Technol. Weld. Join. 19, 30–37 (2014) G. Li, M. Gao, C. Chen, C. Zhang, X.Y. Zeng, Characterisation comparison of laser and laser–arc hybrid welding of Invar 36 alloy. Sci. Technol. Weld. Join. 19, 30–37 (2014)
31.
go back to reference X. Zhan, Y. Liu, J. Liu, Y. Meng, Y. Wei, J. Yang, X. Liu, Comparative study on experimental and numerical investigations of laser beam and electron beam welded joints for Ti6Al4 V alloy. J. Laser Appl. 29, 012020 (2017) X. Zhan, Y. Liu, J. Liu, Y. Meng, Y. Wei, J. Yang, X. Liu, Comparative study on experimental and numerical investigations of laser beam and electron beam welded joints for Ti6Al4 V alloy. J. Laser Appl. 29, 012020 (2017)
32.
go back to reference Y. Deng, Q. Guan, B. Wu, J. Tao, A comparative study on electron beam welding and rigid restraint thermal self-compressing bonding for Ti6Al4 V alloy. Vacuum 117, 17–22 (2015) Y. Deng, Q. Guan, B. Wu, J. Tao, A comparative study on electron beam welding and rigid restraint thermal self-compressing bonding for Ti6Al4 V alloy. Vacuum 117, 17–22 (2015)
33.
go back to reference R.C. Picu, A. Majorell, Mechanical behavior of Ti–6Al–4V at high and moderate temperatures–Part II: constitutive modeling. Mater. Sci. Eng., A 326, 306–316 (2002) R.C. Picu, A. Majorell, Mechanical behavior of Ti–6Al–4V at high and moderate temperatures–Part II: constitutive modeling. Mater. Sci. Eng., A 326, 306–316 (2002)
34.
go back to reference T.S. Balasubramanian, V. Balasubramanian, M.A. Muthumanikkam, Fatigue performance of gas tungsten arc, electron beam, and laser beam welded Ti–6Al–4V alloy joints. J. Mater. Eng. Perform. 20, 1620–1630 (2011) T.S. Balasubramanian, V. Balasubramanian, M.A. Muthumanikkam, Fatigue performance of gas tungsten arc, electron beam, and laser beam welded Ti–6Al–4V alloy joints. J. Mater. Eng. Perform. 20, 1620–1630 (2011)
35.
go back to reference M. Akbari, S. Saedodin, D. Toghraie, R. Shoja-Razavi, F. Kowsari, Experimental and numerical investigation of temperature distribution and melt pool geometry during pulsed laser welding of Ti6Al4 V alloy. Opt. Laser Technol. 59, 52–59 (2014) M. Akbari, S. Saedodin, D. Toghraie, R. Shoja-Razavi, F. Kowsari, Experimental and numerical investigation of temperature distribution and melt pool geometry during pulsed laser welding of Ti6Al4 V alloy. Opt. Laser Technol. 59, 52–59 (2014)
36.
go back to reference M. Chiumenti, M. Cervera, N. Dialami, B. Wu, L. Jinwei, C. Agelet de Saracibar, Numerical modeling of the electron beam welding and its experimental validation. Finite Elem. Anal. Des. 121, 118–133 (2016) M. Chiumenti, M. Cervera, N. Dialami, B. Wu, L. Jinwei, C. Agelet de Saracibar, Numerical modeling of the electron beam welding and its experimental validation. Finite Elem. Anal. Des. 121, 118–133 (2016)
37.
go back to reference Y. Luo, H. Ye, C. Du, H. Xu, Influence of focusing thermal effect upon AZ91D magnesium alloy weld during vacuum electron beam welding. Vacuum 86, 1262–1267 (2012) Y. Luo, H. Ye, C. Du, H. Xu, Influence of focusing thermal effect upon AZ91D magnesium alloy weld during vacuum electron beam welding. Vacuum 86, 1262–1267 (2012)
38.
go back to reference S.V. Akhonin, N.P. Trigub, V.N. Zamkov, S.L. Semiatin, Mathematical modeling of aluminum evaporation during electron-beam cold-hearth melting of Ti–6Al–4V ingots. Metall. Mater. Trans. B 34, 447–454 (2003) S.V. Akhonin, N.P. Trigub, V.N. Zamkov, S.L. Semiatin, Mathematical modeling of aluminum evaporation during electron-beam cold-hearth melting of Ti–6Al–4V ingots. Metall. Mater. Trans. B 34, 447–454 (2003)
40.
go back to reference K. Mundra, T. DebRoy, K.M. Kelkar, Numerical prediction of fluid flow and heat transfer in welding with a moving heat source. Numer. Heat Transf. Part A Appl. 29, 115–129 (1996) K. Mundra, T. DebRoy, K.M. Kelkar, Numerical prediction of fluid flow and heat transfer in welding with a moving heat source. Numer. Heat Transf. Part A Appl. 29, 115–129 (1996)
41.
go back to reference X. He, J.W. Elmer, T. DebRoy, Heat transfer and fluid flow in laser microwelding. J. Appl. Phys. 97, 084909 (2005) X. He, J.W. Elmer, T. DebRoy, Heat transfer and fluid flow in laser microwelding. J. Appl. Phys. 97, 084909 (2005)
42.
go back to reference W. Zhang, C.H. Kim, T. DebRoy, Heat and fluid flow in complex joints during gas metal arc welding—Part I: numerical model of fillet welding. J. Appl. Phys. 95, 5210–5219 (2004) W. Zhang, C.H. Kim, T. DebRoy, Heat and fluid flow in complex joints during gas metal arc welding—Part I: numerical model of fillet welding. J. Appl. Phys. 95, 5210–5219 (2004)
43.
go back to reference H. Zhao, T. Debroy, Weld metal composition change during conduction mode laser welding of aluminum alloy 5182. Metall. Mater. Trans. B 32, 163–172 (2001) H. Zhao, T. Debroy, Weld metal composition change during conduction mode laser welding of aluminum alloy 5182. Metall. Mater. Trans. B 32, 163–172 (2001)
44.
go back to reference S. Yan, S. Dong, B. Xu, Y. Wang, W. Ren, J. Fang, Effect of molten pool convection on pores and elements distribution in the process of laser cladding. Infrared Laser Eng. 43, 2832–2839 (2014) S. Yan, S. Dong, B. Xu, Y. Wang, W. Ren, J. Fang, Effect of molten pool convection on pores and elements distribution in the process of laser cladding. Infrared Laser Eng. 43, 2832–2839 (2014)
45.
go back to reference L. Zeng, T.R. Bieler, Effects of working, heat treatment, and aging on microstructural evolution and crystallographic texture of α, α′, α″ and β phases in Ti–6Al–4V wire. Mater. Sci. Eng., A 392, 403–414 (2005) L. Zeng, T.R. Bieler, Effects of working, heat treatment, and aging on microstructural evolution and crystallographic texture of α, α′, α″ and β phases in Ti–6Al–4V wire. Mater. Sci. Eng., A 392, 403–414 (2005)
46.
go back to reference B.D. Venkatesh, D.L. Chen, S.D. Bhole, Effect of heat treatment on mechanical properties of Ti–6Al–4V ELI alloy. Mater. Sci. Eng., A 506, 117–124 (2009) B.D. Venkatesh, D.L. Chen, S.D. Bhole, Effect of heat treatment on mechanical properties of Ti–6Al–4V ELI alloy. Mater. Sci. Eng., A 506, 117–124 (2009)
Metadata
Title
Comparative Study on Microstructure and Aluminum Distribution Between Laser Beam Welding and Electron Beam Welding of Ti–6Al–4V Alloy Plates
Authors
Hengchang Bu
Qiyu Gao
Yun Li
Feiyun Wang
Xiaohong Zhan
Publication date
27-03-2020
Publisher
The Korean Institute of Metals and Materials
Published in
Metals and Materials International / Issue 9/2021
Print ISSN: 1598-9623
Electronic ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-020-00683-z

Other articles of this Issue 9/2021

Metals and Materials International 9/2021 Go to the issue

Premium Partners