Skip to main content
Top

2021 | OriginalPaper | Chapter

Comparative Study on Parkinson Disease Dignosis Treatment Classification Using Machine Learning Classifier (PDMLC)

Authors : Hiral R. Patel, Ajay M. Patel, Satyen M. Parikh

Published in: ICT Analysis and Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Parkinson’s infection is a cerebrum issue that prompts shaking, solidness, and trouble with strolling, parity, and coordination. Parkinson’s side effects for the most part start step by step and deteriorate after some time. As the infection advances, individuals may experience issues strolling and talking. Parkinson disease is a neurological issue, which is one of the most excruciating, risky, and nondurable infections, which happens at more established ages. The Static Spiral Test (SST), Dynamic Spiral Test (DST) and Circular Motion Test(CMT) on certain point records were utilized in the analytical modelling application which was created for the conclusion of this malady. The dataset is collected from the online authorized source to classify the test basis on the symptoms. These datasets were separated into 70–30% of splitting into the training and testing information inside the original and control structures of ten-fold cross-validation approval method. Training set is utilized for train the ML-based analytical classification models such as logistic regression, neighbors classifier, decision tree, and support vector machine. Model is also trained by performing hyper-parameter tuning. After training phase, the model is assessed with test and the comparative results are discussed. Additionally, new information investigation was completed. As indicated by the outcomes acquired, SVM with RBF kernel is more effective than other classifier; furthermore, logistic regression calculations are in investigation of new information. This study contributes in the same direction by analyzing the behavior according treatment classification.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Zham, P., Kumar, D. K., Dabnichki, P., Arjunan, S. P., Raghav, S. (2017). Distinguishing different stages of parkinson’s disease using composite index of speed and pen-pressure of sketching a spiral. Front Neurol. 2017; 8: 435. Published online 2017 Sep 6. https://doi.org/10.3389/fneur.2017.00435 PMCID: PMC5592741. Zham, P., Kumar, D. K., Dabnichki, P., Arjunan, S. P., Raghav, S. (2017). Distinguishing different stages of parkinson’s disease using composite index of speed and pen-pressure of sketching a spiral. Front Neurol. 2017; 8: 435. Published online 2017 Sep 6. https://​doi.​org/​10.​3389/​fneur.​2017.​00435 PMCID: PMC5592741.
4.
go back to reference Lahmiri, S.; Shmuel, A. Detection of Parkinson’s disease based on voice patterns ranking and optimized support vector machine. Biomed. Signal Process. Control 2018, 49, 427–433. [CrossRef]. Lahmiri, S.; Shmuel, A. Detection of Parkinson’s disease based on voice patterns ranking and optimized support vector machine. Biomed. Signal Process. Control 2018, 49, 427–433. [CrossRef].
5.
go back to reference Gómez-García, J.A.; Moro-Velázquez, L.; Godino-Llorente, J.I. On the design of automatic voice condition analysis systems. Part I: Review of concepts and an insight to the state of the art. Biomed. Signal Process. Control 2019, 51, 181–199. [CrossRef]. Gómez-García, J.A.; Moro-Velázquez, L.; Godino-Llorente, J.I. On the design of automatic voice condition analysis systems. Part I: Review of concepts and an insight to the state of the art. Biomed. Signal Process. Control 2019, 51, 181–199. [CrossRef].
6.
go back to reference Gómez-García, J.A.; Moro-Velázquez, L.; Godino-Llorente, J.I. On the design of automatic voice condition analysis systems. Part II: Review of speaker recognition techniques and study on the e_ects of di_erent variability factors. Biomed. Signal Process. Control 2019, 48, 128–143. [CrossRef]. Gómez-García, J.A.; Moro-Velázquez, L.; Godino-Llorente, J.I. On the design of automatic voice condition analysis systems. Part II: Review of speaker recognition techniques and study on the e_ects of di_erent variability factors. Biomed. Signal Process. Control 2019, 48, 128–143. [CrossRef].
7.
go back to reference Viteckova, S.; Kutilek, P.; Svoboda, Z.; Krupicka, R.; Kauler, J.; Szabo, Z. Gait symmetry measures: A review of current and prospective methods. Biomed. Signal Process. Control 2018, 42, 89–100. [CrossRef]. Viteckova, S.; Kutilek, P.; Svoboda, Z.; Krupicka, R.; Kauler, J.; Szabo, Z. Gait symmetry measures: A review of current and prospective methods. Biomed. Signal Process. Control 2018, 42, 89–100. [CrossRef].
8.
go back to reference San-Segundo, R.; Navarro-Hellín, H.; Torres-Sánchez, R.; Hodgins, J.; De la Torre, F. Increasing Robustness in the Detection of Freezing of Gait in Parkinson’s Disease. Electronics 2019, 8, 119. [CrossRef]. San-Segundo, R.; Navarro-Hellín, H.; Torres-Sánchez, R.; Hodgins, J.; De la Torre, F. Increasing Robustness in the Detection of Freezing of Gait in Parkinson’s Disease. Electronics 2019, 8, 119. [CrossRef].
9.
go back to reference McLennan, J.E.; Nakano, K.; Tyler, H.R.; Schwab, R.S. Micrographia in Parkinson’s disease. J Neurol. Sci. 1972, 15, 141–152. [CrossRef]. McLennan, J.E.; Nakano, K.; Tyler, H.R.; Schwab, R.S. Micrographia in Parkinson’s disease. J Neurol. Sci. 1972, 15, 141–152. [CrossRef].
10.
go back to reference Zham, P.; Arjunan, S.P.; Raghav, S.; Kumar, D.K. E_cacy of Guided Spiral Drawing in the Classification of Parkinson’s Disease. IEEE J. Biomed. Health Inform. 2018, 22, 1648–1652. [CrossRef]. Zham, P.; Arjunan, S.P.; Raghav, S.; Kumar, D.K. E_cacy of Guided Spiral Drawing in the Classification of Parkinson’s Disease. IEEE J. Biomed. Health Inform. 2018, 22, 1648–1652. [CrossRef].
11.
go back to reference Potgieser, A.R.; Roosma, E.; Beudel, M.; de Jong, B.M. The e_ect of visual feedback on writing size in parkinson’s disease. Parkinsons Dis. 2015, 2015, 857041. [CrossRef]. Potgieser, A.R.; Roosma, E.; Beudel, M.; de Jong, B.M. The e_ect of visual feedback on writing size in parkinson’s disease. Parkinsons Dis. 2015, 2015, 857041. [CrossRef].
12.
go back to reference Drotár, P.; Mekyska, J.; Rektorová, I.; Masarová, L.; Smékal, Z.; Faundez-Zanuy, M. Evaluation of handwriting kinematics and pressure for di_erential diagnosis of Parkinson’s disease. Artif. Intell. Med. 2016, 67, 39–46. [CrossRef]. Drotár, P.; Mekyska, J.; Rektorová, I.; Masarová, L.; Smékal, Z.; Faundez-Zanuy, M. Evaluation of handwriting kinematics and pressure for di_erential diagnosis of Parkinson’s disease. Artif. Intell. Med. 2016, 67, 39–46. [CrossRef].
13.
go back to reference Letanneux, A.; Danna, J.; Velay, J.L.; Viallet, F.; Pinto, S. From micrographia to Parkinson’s disease dysgraphia. Mov. Disord. 2014, 29, 1467–1475. [CrossRef]. Letanneux, A.; Danna, J.; Velay, J.L.; Viallet, F.; Pinto, S. From micrographia to Parkinson’s disease dysgraphia. Mov. Disord. 2014, 29, 1467–1475. [CrossRef].
14.
go back to reference Thomas, M.; Lenka, A.; Kumar Pal, P. Handwriting Analysis in Parkinson’s Disease: Current Status and Future Directions. Mov. Disord. Clin. Pract. 2017, 4, 806–818. [CrossRef]. Thomas, M.; Lenka, A.; Kumar Pal, P. Handwriting Analysis in Parkinson’s Disease: Current Status and Future Directions. Mov. Disord. Clin. Pract. 2017, 4, 806–818. [CrossRef].
15.
go back to reference Rosenblum, S.; Samuel, M.; Zlotnik, S.; Erikh, I.; Schlesinger, I. Handwriting as an objective tool for Parkinson’s disease diagnosis. J. Neurol. 2013, 260, 2357–2361. [CrossRef]. Rosenblum, S.; Samuel, M.; Zlotnik, S.; Erikh, I.; Schlesinger, I. Handwriting as an objective tool for Parkinson’s disease diagnosis. J. Neurol. 2013, 260, 2357–2361. [CrossRef].
16.
go back to reference Impedovo, D.; Pirlo, G. Dynamic Handwriting Analysis for the Assessment of Neurodegenerative Diseases: A Pattern Recognition Perspective. IEEE Rev. Biomed. 2019, 12, 209–220. [CrossRef]. Impedovo, D.; Pirlo, G. Dynamic Handwriting Analysis for the Assessment of Neurodegenerative Diseases: A Pattern Recognition Perspective. IEEE Rev. Biomed. 2019, 12, 209–220. [CrossRef].
17.
go back to reference Impedovo, D.; Pirlo, G. Chapter 7: Online Handwriting Analysis for the Assessment of Alzheimer’s Disease and Parkinson’s Disease: Overview and Experimental Investigation. In Series on Language Processing, Pattern. Impedovo, D.; Pirlo, G. Chapter 7: Online Handwriting Analysis for the Assessment of Alzheimer’s Disease and Parkinson’s Disease: Overview and Experimental Investigation. In Series on Language Processing, Pattern.
18.
go back to reference Recognition, and Intelligent Systems. Pattern Recognition and Artificial Intelligence; World Scientific Publishing: Singapore, 2019; pp. 113–128. Recognition, and Intelligent Systems. Pattern Recognition and Artificial Intelligence; World Scientific Publishing: Singapore, 2019; pp. 113–128.
19.
go back to reference Classification of advanced stages of Parkinson’s disease: translation into stratified treatments Rejko Krüger, Jochen Klucken, Daniel Weiss, Lars Tönges, Pierre Kolber, Stefan Unterecker, Michael Lorrain, Horst Baas, Thomas Müller, Peter Riederer J Neural Transm (Vienna) 2017; 124(8): 1015–1027. Published online 2017 Mar 24. doi:https://doi.org/10.1007/s00702-017-1707-x. Classification of advanced stages of Parkinson’s disease: translation into stratified treatments Rejko Krüger, Jochen Klucken, Daniel Weiss, Lars Tönges, Pierre Kolber, Stefan Unterecker, Michael Lorrain, Horst Baas, Thomas Müller, Peter Riederer J Neural Transm (Vienna) 2017; 124(8): 1015–1027. Published online 2017 Mar 24. doi:https://​doi.​org/​10.​1007/​s00702-017-1707-x.
20.
go back to reference F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,“Scikit-learn: Machine learning in python,” Journal of machine learning research, vol. 12, no. Oct, pp. 2825–2830, 2011. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,“Scikit-learn: Machine learning in python,” Journal of machine learning research, vol. 12, no. Oct, pp. 2825–2830, 2011.
21.
go back to reference M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.
22.
23.
go back to reference Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE transactions on systems, man, and cybernetics, 21(3), 660–674.MathSciNetCrossRef Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE transactions on systems, man, and cybernetics, 21(3), 660–674.MathSciNetCrossRef
24.
go back to reference L. Breiman, Classification and regression trees. Routledge, 2017. L. Breiman, Classification and regression trees. Routledge, 2017.
25.
go back to reference Liaw, A., Wiener, M., et al. (2002). Classification and regression by randomforest. R news, 2(3), 18–22. Liaw, A., Wiener, M., et al. (2002). Classification and regression by randomforest. R news, 2(3), 18–22.
26.
go back to reference Simm, J., de Abril, I. M., & Sugiyama, M. (2014). Tree-based ensemble multi-task learning method for classification and regression. IEICE TRANSACTIONS on Information and Systems, 97(6), 677–1681. Simm, J., de Abril, I. M., & Sugiyama, M. (2014). Tree-based ensemble multi-task learning method for classification and regression. IEICE TRANSACTIONS on Information and Systems, 97(6), 677–1681.
27.
go back to reference J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals of statistics, pp. 1189–1232, 2001. J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals of statistics, pp. 1189–1232, 2001.
Metadata
Title
Comparative Study on Parkinson Disease Dignosis Treatment Classification Using Machine Learning Classifier (PDMLC)
Authors
Hiral R. Patel
Ajay M. Patel
Satyen M. Parikh
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-8354-4_28