Skip to main content
Top
Published in: Wireless Personal Communications 2/2018

18-04-2018

Comparison Analysis of Radio_Based and Sensor_Based Wearable Human Activity Recognition Systems

Authors: Hamed Rezaie, Mona Ghassemian

Published in: Wireless Personal Communications | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Human activity recognition (HAR) systems aim to provide low-cost, low-power, unobtrusive and non-invasive solutions to monitor and collect data accurately for human-centric applications, such as health monitoring, assisted living and rehabilitation. Although wearable sensor_based HAR systems have been demonstrated to be effective in the literature, they raise various concerns such as energy consumption and hardware cost. In this work, we examine the pattern of radio signal strength variations in different activity classes in absence of sensor hardware. We present a performance comparison analysis by setting up two testbeds to compare a sensor_based with a radio_based HAR system over a range of variable metrics such as the number of sensor nodes, and the nodes and the sink node placement with respect to the accuracy and the energy efficiency. Wearable HAR datasets are constructed based on our reported testbeds. The main contributions of this work are in two folds: (1) when eliminating the use of accelerometers in the radio_based system, beside the reduced hardware cost, prolonged lifetime of the HAR system by nearly 30% can be achieved while maintaining the accuracy. The impact of the selected overlapping window size (WS) is also investigated with respect to the accuracy level in both systems over a range of activity classes. (2) The impact of the node placement on the accuracy indicates a higher dependency to the number of nodes, the nodes and the sink node placements in the radio_based system due to the dependency of the results to the distance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Patel, M., & Wang, J. (2010). Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wireless Communications Magazine, 17(1), 80–88.CrossRef Patel, M., & Wang, J. (2010). Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wireless Communications Magazine, 17(1), 80–88.CrossRef
2.
go back to reference Lara, O. D., & Labrador, M. A. (2013). A survey on human activity recognition using wearable sensors. IEEE Communications Surveys and Tutorials, 15(3), 1192–1209.CrossRef Lara, O. D., & Labrador, M. A. (2013). A survey on human activity recognition using wearable sensors. IEEE Communications Surveys and Tutorials, 15(3), 1192–1209.CrossRef
3.
go back to reference Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRef
4.
go back to reference Del Re, E., Morosi, S., Mucchi, L., Ronga, L. S., & Jayousi, S. (2016). Future wireless systems for human bond communications. Wireless Personal Communications, 88(1), 39–52.CrossRef Del Re, E., Morosi, S., Mucchi, L., Ronga, L. S., & Jayousi, S. (2016). Future wireless systems for human bond communications. Wireless Personal Communications, 88(1), 39–52.CrossRef
5.
go back to reference Chu, D., Lane, N. D., Lai, T. T. T., Pang, C., Meng, X., Guo, Q., Li, F., & Zhao, F. (2011). Balancing energy, latency and accuracy for mobile sensor data classification. In Proceedings of the 9th ACM conference on embedded networked sensor systems (pp. 54–67). ACM. Chu, D., Lane, N. D., Lai, T. T. T., Pang, C., Meng, X., Guo, Q., Li, F., & Zhao, F. (2011). Balancing energy, latency and accuracy for mobile sensor data classification. In Proceedings of the 9th ACM conference on embedded networked sensor systems (pp. 54–67). ACM.
6.
go back to reference Morillo, L. M. S., Gonzalez-Abril, L., Ramirez, J. A. O., & de la Concepcion, M. A. A. (2015). Low energy physical activity recognition system on smartphones. Sensors, 15(3), 5163–5196.CrossRef Morillo, L. M. S., Gonzalez-Abril, L., Ramirez, J. A. O., & de la Concepcion, M. A. A. (2015). Low energy physical activity recognition system on smartphones. Sensors, 15(3), 5163–5196.CrossRef
7.
go back to reference Yan, Z., Subbaraju, V., Chakraborty, D., Misra, A., & Aberer, K. (2012). Energy-efficient continuous activity recognition on mobile phones: An activity-adaptive approach. In 6th International symposium on wearable computers (ISWC) (pp. 17–24). IEEE. Yan, Z., Subbaraju, V., Chakraborty, D., Misra, A., & Aberer, K. (2012). Energy-efficient continuous activity recognition on mobile phones: An activity-adaptive approach. In 6th International symposium on wearable computers (ISWC) (pp. 17–24). IEEE.
8.
go back to reference Anguita, D., Ghio, A., Oneto, L., Llanas Parra, F. X., & Reyes Ortiz, J. L. (2013). Energy efficient smartphone-based activity recognition using fixed-point arithmetic. Journal of Universal Computer Science, 19(9), 1295–1314. Anguita, D., Ghio, A., Oneto, L., Llanas Parra, F. X., & Reyes Ortiz, J. L. (2013). Energy efficient smartphone-based activity recognition using fixed-point arithmetic. Journal of Universal Computer Science, 19(9), 1295–1314.
9.
go back to reference Au, L. K., Batalin, M. A., Stathopoulos, T., Bui, A. A., & Kaiser, W. J. (2009). Episodic sampling: Towards energy-efficient patient monitoring with wearable sensors. In Annual international conference of the IEEE engineering in medicine and biology society, EMBC 2009 (pp. 6901–6905). IEEE. Au, L. K., Batalin, M. A., Stathopoulos, T., Bui, A. A., & Kaiser, W. J. (2009). Episodic sampling: Towards energy-efficient patient monitoring with wearable sensors. In Annual international conference of the IEEE engineering in medicine and biology society, EMBC 2009 (pp. 6901–6905). IEEE.
10.
go back to reference Gordon, D., Czerny, J., Miyaki, T., & Beigl, M. (2012). Energy-efficient activity recognition using prediction. In 16th International symposium on wearable computers (ISWC) (pp. 29–36). IEEE. Gordon, D., Czerny, J., Miyaki, T., & Beigl, M. (2012). Energy-efficient activity recognition using prediction. In 16th International symposium on wearable computers (ISWC) (pp. 29–36). IEEE.
11.
go back to reference Wang, Y., Lin, J., Annavaram, M., Jacobson, Q. A., Hong, J., Krishnamachari, B., & Sadeh, N. (2009). A framework of energy efficient mobile sensing for automatic user state recognition. In Proceedings of the 7th international conference on mobile systems, applications, and services (pp. 179–192). ACM. Wang, Y., Lin, J., Annavaram, M., Jacobson, Q. A., Hong, J., Krishnamachari, B., & Sadeh, N. (2009). A framework of energy efficient mobile sensing for automatic user state recognition. In Proceedings of the 7th international conference on mobile systems, applications, and services (pp. 179–192). ACM.
12.
go back to reference Liang, Y., Zhou, X., Yu, Z., & Guo, B. (2014). Energy-efficient motion related activity recognition on mobile devices for pervasive healthcare. Mobile Networks and Applications, 19(3), 303–317.CrossRef Liang, Y., Zhou, X., Yu, Z., & Guo, B. (2014). Energy-efficient motion related activity recognition on mobile devices for pervasive healthcare. Mobile Networks and Applications, 19(3), 303–317.CrossRef
13.
go back to reference Dong, B., Montoye, A., Moore, R., Pfeiffer, K., & Biswas, S. (2013). Energy-aware activity classification using wearable sensor networks. In Proceedings of SPIE—The International Society for Optical Engineering, 8723(87230Y). Dong, B., Montoye, A., Moore, R., Pfeiffer, K., & Biswas, S. (2013). Energy-aware activity classification using wearable sensor networks. In Proceedings of SPIE—The International Society for Optical Engineering, 8723(87230Y).
14.
go back to reference Fida, B., Bernabucci, I., Bibbo, D., Conforto, S., & Schmid, M. (2015). Pre-processing effect on the accuracy of event-based activity segmentation and classification through inertial sensors. Sensors, 15(9), 23095–23109.CrossRef Fida, B., Bernabucci, I., Bibbo, D., Conforto, S., & Schmid, M. (2015). Pre-processing effect on the accuracy of event-based activity segmentation and classification through inertial sensors. Sensors, 15(9), 23095–23109.CrossRef
15.
go back to reference Bashir, S. A., Doolan, D. C., & Petrovski, A. (2016). The effect of window length on accuracy of smartphone-based activity recognition. IAENG International Journal of Computer Science, 43(1), 126–136. Bashir, S. A., Doolan, D. C., & Petrovski, A. (2016). The effect of window length on accuracy of smartphone-based activity recognition. IAENG International Journal of Computer Science, 43(1), 126–136.
16.
go back to reference Montoye, A. H., Pivarnik, J. M., Mudd, L. M., Biswas, S., & Pfeiffer, K. A. (2016). Comparison of activity type classification accuracy from accelerometers worn on the hip, wrists, and thigh in young, apparently healthy adults. Measurement in Physical Education and Exercise Science, 20(3), 173–183.CrossRef Montoye, A. H., Pivarnik, J. M., Mudd, L. M., Biswas, S., & Pfeiffer, K. A. (2016). Comparison of activity type classification accuracy from accelerometers worn on the hip, wrists, and thigh in young, apparently healthy adults. Measurement in Physical Education and Exercise Science, 20(3), 173–183.CrossRef
17.
go back to reference Bashir, S. A., Doolan, D. C., & Petrovski, A. (2015). The impact of feature vector length on activity recognition accuracy on mobile phone. In Proceedings of the world congress on engineering, WCE, 2015 (Vol. 1). Bashir, S. A., Doolan, D. C., & Petrovski, A. (2015). The impact of feature vector length on activity recognition accuracy on mobile phone. In Proceedings of the world congress on engineering, WCE, 2015 (Vol. 1).
18.
go back to reference Zhu, X., & Qiu, H. (2016). High accuracy human activity recognition based on sparse locality preserving projections. PloS one, 11(11), e0166567.CrossRef Zhu, X., & Qiu, H. (2016). High accuracy human activity recognition based on sparse locality preserving projections. PloS one, 11(11), e0166567.CrossRef
19.
go back to reference Sharma, A., Lee, Y. D., & Chung, W. Y. (2008). High accuracy human activity monitoring using neural network. In 3rd International conference on convergence and hybrid information technology. ICCIT’08 (pp. 430–435). IEEE. Sharma, A., Lee, Y. D., & Chung, W. Y. (2008). High accuracy human activity monitoring using neural network. In 3rd International conference on convergence and hybrid information technology. ICCIT’08 (pp. 430–435). IEEE.
20.
go back to reference Koskimki, H. (2015). Avoiding bias in classification accuracy—A case study for activity recognition. In 2015 IEEE symposium series on computational intelligence (pp. 301–306). IEEE. Koskimki, H. (2015). Avoiding bias in classification accuracy—A case study for activity recognition. In 2015 IEEE symposium series on computational intelligence (pp. 301–306). IEEE.
21.
go back to reference Rezaie, H., & Ghassemian, M. (2018). Implementation study of wearable sensors for activity recognition systems. In F. J. Velez & D. Miyandoab (Eds.), Wearable technologies and wireless body sensor networks for healthcare. London: IET Publications. Rezaie, H., & Ghassemian, M. (2018). Implementation study of wearable sensors for activity recognition systems. In F. J. Velez & D. Miyandoab (Eds.), Wearable technologies and wireless body sensor networks for healthcare. London: IET Publications.
22.
go back to reference Yan, Z., Subbaraju, V., Chakraborty, D., Misra, A., & Aberer, K. (2012). Energy-efficient continuous activity recognition on mobile phones: An activity-adaptive approach. In 16th International symposium on wearable computers (ISWC) (pp. 17–24). IEEE. Yan, Z., Subbaraju, V., Chakraborty, D., Misra, A., & Aberer, K. (2012). Energy-efficient continuous activity recognition on mobile phones: An activity-adaptive approach. In 16th International symposium on wearable computers (ISWC) (pp. 17–24). IEEE.
23.
go back to reference French, B., Siewiorek, D. P., Smailagic, A., & Deisher, M. (2007). Selective sampling strategies to conserve power in context aware devices. In 11th IEEE international symposium on wearable computers, 2007 (pp. 77–80). IEEE. French, B., Siewiorek, D. P., Smailagic, A., & Deisher, M. (2007). Selective sampling strategies to conserve power in context aware devices. In 11th IEEE international symposium on wearable computers, 2007 (pp. 77–80). IEEE.
24.
go back to reference Ghasemzadeh, H., Guenterberg, E., & Jafari, R. (2009). Energy-efficient information-driven coverage for physical movement monitoring in body sensor networks. IEEE Journal on Selected Areas in Communications, 27(1), 58–69.CrossRef Ghasemzadeh, H., Guenterberg, E., & Jafari, R. (2009). Energy-efficient information-driven coverage for physical movement monitoring in body sensor networks. IEEE Journal on Selected Areas in Communications, 27(1), 58–69.CrossRef
25.
go back to reference Wang, S., & Zhou, G. (2015). A review on radio based activity recognition. Digital Communications and Networks, 1(1), 20–29.CrossRef Wang, S., & Zhou, G. (2015). A review on radio based activity recognition. Digital Communications and Networks, 1(1), 20–29.CrossRef
26.
go back to reference Rezaie, H., & Ghassemian, M. (2015). Implementation study of wearable sensors for activity recognition systems. Healthcare Technology Letters, 2(4), 95–100.CrossRef Rezaie, H., & Ghassemian, M. (2015). Implementation study of wearable sensors for activity recognition systems. Healthcare Technology Letters, 2(4), 95–100.CrossRef
27.
go back to reference Geng, Y., Chen, J., Fu, R., Bao, G., & Pahlavan, K. (2016). Enlighten wearable physiological monitoring systems: On-body RF characteristics based human motion classification using a support vector machine. IEEE Transactions on Mobile Computing, 15(3), 656–671.CrossRef Geng, Y., Chen, J., Fu, R., Bao, G., & Pahlavan, K. (2016). Enlighten wearable physiological monitoring systems: On-body RF characteristics based human motion classification using a support vector machine. IEEE Transactions on Mobile Computing, 15(3), 656–671.CrossRef
28.
go back to reference Scholz, M., Riedel, T., Hock, M., & Beigl, M. (2013). Device-free and device-bound activity recognition using radio signal strength. In Proceedings of the 4th augmented human international conference (pp. 100–107). ACM. Scholz, M., Riedel, T., Hock, M., & Beigl, M. (2013). Device-free and device-bound activity recognition using radio signal strength. In Proceedings of the 4th augmented human international conference (pp. 100–107). ACM.
29.
go back to reference Qi, X., Zhou, G., Li, Y., & Peng, G. (2012). RadioSense: Exploiting wireless communication patterns for body sensor network activity recognition. In 33rd IEEE real-time systems symposium (RTSS) (pp. 95–104). IEEE. Qi, X., Zhou, G., Li, Y., & Peng, G. (2012). RadioSense: Exploiting wireless communication patterns for body sensor network activity recognition. In 33rd IEEE real-time systems symposium (RTSS) (pp. 95–104). IEEE.
30.
go back to reference Atallah, L., Lo, B., King, R., & Yang, G.-Z. (2011). Sensor positioning for activity recognition using wearable accelerometers. IEEE Transactions on Biomedical Circuits and Systems, 5(4), 320–329.CrossRef Atallah, L., Lo, B., King, R., & Yang, G.-Z. (2011). Sensor positioning for activity recognition using wearable accelerometers. IEEE Transactions on Biomedical Circuits and Systems, 5(4), 320–329.CrossRef
31.
go back to reference Yang, A. Y., Jafari, R., Sastry, S. S., & Bajcsy, R. (2009). Distributed recognition of human actions using wearable motion sensor networks. Journal of Ambient Intelligence and Smart Environments, 1(2), 103–115. Yang, A. Y., Jafari, R., Sastry, S. S., & Bajcsy, R. (2009). Distributed recognition of human actions using wearable motion sensor networks. Journal of Ambient Intelligence and Smart Environments, 1(2), 103–115.
32.
go back to reference Xu, W., Zhang, M., Sawchuk, A. A., & Sarrafzadeh, M. (2012). Robust human activity and sensor location corecognition via sparse signal representation. IEEE Transactions on Biomedical Engineering, 59(11), 3169–3176.CrossRef Xu, W., Zhang, M., Sawchuk, A. A., & Sarrafzadeh, M. (2012). Robust human activity and sensor location corecognition via sparse signal representation. IEEE Transactions on Biomedical Engineering, 59(11), 3169–3176.CrossRef
33.
go back to reference Chavarriaga, R., Bayati, H., & Milln, J. D. (2013). Unsupervised adaptation for acceleration-based activity recognition: Robustness to sensor displacement and rotation. Personal and Ubiquitous Computing, 17(3), 479–490.CrossRef Chavarriaga, R., Bayati, H., & Milln, J. D. (2013). Unsupervised adaptation for acceleration-based activity recognition: Robustness to sensor displacement and rotation. Personal and Ubiquitous Computing, 17(3), 479–490.CrossRef
34.
go back to reference Kale, N., Lee, J., Lotfian, R., & Jafari, R. (2012). Impact of sensor misplacement on dynamic time warping based human activity recognition using wearable computers. In Proceedings of the 12th conference on wireless health (pp. 1–8). ACM. Kale, N., Lee, J., Lotfian, R., & Jafari, R. (2012). Impact of sensor misplacement on dynamic time warping based human activity recognition using wearable computers. In Proceedings of the 12th conference on wireless health (pp. 1–8). ACM.
35.
go back to reference Figo, D., Diniz, P. C., Ferreira, D. R., & Cardoso, J. M. (2010). Preprocessing techniques for context recognition from accelerometer data. Personal and Ubiquitous Computing, 14(7), 645–662.CrossRef Figo, D., Diniz, P. C., Ferreira, D. R., & Cardoso, J. M. (2010). Preprocessing techniques for context recognition from accelerometer data. Personal and Ubiquitous Computing, 14(7), 645–662.CrossRef
36.
go back to reference Huynh, T., & Schiele, B. (2005). Analyzing features for activity recognition. In Proceedings of the 2005 joint conference on smart objects and ambient intelligence: Innovative context-aware services: Usages and technologies (pp. 159–163). ACM. Huynh, T., & Schiele, B. (2005). Analyzing features for activity recognition. In Proceedings of the 2005 joint conference on smart objects and ambient intelligence: Innovative context-aware services: Usages and technologies (pp. 159–163). ACM.
37.
go back to reference Stikic, M., Huynh, T., Van Laerhoven, K., & Schiele, B. (2008). ADL recognition based on the combination of RFID and accelerometer sensing. In 2nd International conference on pervasive computing technologies for healthcare. Pervasive Health 2008 (pp. 258–263). IEEE. Stikic, M., Huynh, T., Van Laerhoven, K., & Schiele, B. (2008). ADL recognition based on the combination of RFID and accelerometer sensing. In 2nd International conference on pervasive computing technologies for healthcare. Pervasive Health 2008 (pp. 258–263). IEEE.
38.
go back to reference Sun, L., Zhang, D., Li, B., Guo, B., & Li, S. (2010). Activity Recognition on an accelerometer embedded mobile phone with varying positions and orientations. In Z. Yu, R. Liscano, G. Chen, D. Zhang & X. Zhou (Eds.), Ubiquitous Intelligence and Computing (UIC 2010). Lecture Notes in Computer Science (Vol. 6406). Berlin, Heidelberg: Springer. Sun, L., Zhang, D., Li, B., Guo, B., & Li, S. (2010). Activity Recognition on an accelerometer embedded mobile phone with varying positions and orientations. In Z. Yu, R. Liscano, G. Chen, D. Zhang & X. Zhou (Eds.), Ubiquitous Intelligence and Computing (UIC 2010). Lecture Notes in Computer Science (Vol. 6406). Berlin, Heidelberg: Springer.
39.
go back to reference Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., & Korhonen, I. (2006). Activity classification using realistic data from wearable sensors. IEEE Transactions on Information Technology in Biomedicine, 10(1), 119–128.CrossRef Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., & Korhonen, I. (2006). Activity classification using realistic data from wearable sensors. IEEE Transactions on Information Technology in Biomedicine, 10(1), 119–128.CrossRef
40.
go back to reference Dernbach, S., Das, B., Krishnan, N. C., Thomas, B. L., & Cook, D. J. (2012). Simple and complex activity recognition through smart phones. In 8th International conference on intelligent environments (IE) (pp. 214–221). IEEE. Dernbach, S., Das, B., Krishnan, N. C., Thomas, B. L., & Cook, D. J. (2012). Simple and complex activity recognition through smart phones. In 8th International conference on intelligent environments (IE) (pp. 214–221). IEEE.
41.
go back to reference Zinnen, A., Wojek, C., & Schiele, B. (2009). Multi activity recognition based on body model-derived primitives. In Location and context awareness (pp. 1–18). Zinnen, A., Wojek, C., & Schiele, B. (2009). Multi activity recognition based on body model-derived primitives. In Location and context awareness (pp. 1–18).
42.
go back to reference Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., & Amirat, Y. (2015). Physical human activity recognition using wearable sensors. Sensors, 15(12), 31314–31338.CrossRef Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., & Amirat, Y. (2015). Physical human activity recognition using wearable sensors. Sensors, 15(12), 31314–31338.CrossRef
43.
go back to reference Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.MATH Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.MATH
44.
go back to reference Alpaydin, E. (2014). Introduction to machine learning. Cambridge: MIT press.MATH Alpaydin, E. (2014). Introduction to machine learning. Cambridge: MIT press.MATH
45.
go back to reference Quinlan, J. R. (2014). C4.5: Programs for machine learning. Amsterdam: Elsevier. Quinlan, J. R. (2014). C4.5: Programs for machine learning. Amsterdam: Elsevier.
47.
go back to reference Instruments, T. (2007). CC2420 datasheet. Reference SWRS041B. Instruments, T. (2007). CC2420 datasheet. Reference SWRS041B.
48.
go back to reference Mallinson, M., Drane, P., & Hussain, S. (2007). Discrete radio power level consumption model in wireless sensor networks. In IEEE International conference on mobile adhoc and sensor systems, MASS 2007. (pp. 1–6). IEEE. Mallinson, M., Drane, P., & Hussain, S. (2007). Discrete radio power level consumption model in wireless sensor networks. In IEEE International conference on mobile adhoc and sensor systems, MASS 2007. (pp. 1–6). IEEE.
49.
go back to reference Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.CrossRef Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.CrossRef
50.
go back to reference Bao, L., & Intille, S. S. (2004). Activity recognition from user-annotated acceleration data. In International conference on pervasive computing (pp. 1–17). Springer. Bao, L., & Intille, S. S. (2004). Activity recognition from user-annotated acceleration data. In International conference on pervasive computing (pp. 1–17). Springer.
51.
go back to reference Mathie, M. J., Celler, B. G., Lovell, N. H., & Coster, A. C. F. (2004). Classification of basic daily movements using a triaxial accelerometer. Medical and Biological Engineering and Computing, 42(5), 679–687.CrossRef Mathie, M. J., Celler, B. G., Lovell, N. H., & Coster, A. C. F. (2004). Classification of basic daily movements using a triaxial accelerometer. Medical and Biological Engineering and Computing, 42(5), 679–687.CrossRef
52.
go back to reference Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., & Celler, B. G. (2006). Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information Technology in Biomedicine, 10(1), 156–167.CrossRef Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., & Celler, B. G. (2006). Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information Technology in Biomedicine, 10(1), 156–167.CrossRef
53.
go back to reference Olgun, D. O., & Pentland, A. S. (2006), Human activity recognition: Accuracy across common locations for wearable sensors. In Proceedings of 2006 10th IEEE international symposium on wearable computers, Montreux, Switzerland (pp. 11–14). Olgun, D. O., & Pentland, A. S. (2006), Human activity recognition: Accuracy across common locations for wearable sensors. In Proceedings of 2006 10th IEEE international symposium on wearable computers, Montreux, Switzerland (pp. 11–14).
54.
go back to reference Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., & Korhonen, I. (2006). Activity classification using realistic data from wearable sensors. IEEE Transactions on Information Technology in Biomedicine, 10(1), 119–128.CrossRef Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., & Korhonen, I. (2006). Activity classification using realistic data from wearable sensors. IEEE Transactions on Information Technology in Biomedicine, 10(1), 119–128.CrossRef
55.
go back to reference Pirttikangas, S., Fujinami, K., & Nakajima, T. (2006). Feature selection and activity recognition from wearable sensors. In International symposium on ubiquitious computing systems (pp. 516–527). Pirttikangas, S., Fujinami, K., & Nakajima, T. (2006). Feature selection and activity recognition from wearable sensors. In International symposium on ubiquitious computing systems (pp. 516–527).
56.
go back to reference Minnen, D., Westeyn, T., Ashbrook, D., Presti, P., & Starner, T. (2007). Recognizing soldier activities in the field. In 4th International workshop on wearable and implantable body sensor networks (BSN 2007) (pp. 236–241). Springer. Minnen, D., Westeyn, T., Ashbrook, D., Presti, P., & Starner, T. (2007). Recognizing soldier activities in the field. In 4th International workshop on wearable and implantable body sensor networks (BSN 2007) (pp. 236–241). Springer.
57.
go back to reference Salarian, A., Russmann, H., Vingerhoets, F. J., Burkhard, P. R., & Aminian, K. (2007). Ambulatory monitoring of physical activities in patients with Parkinson’s disease. IEEE Transactions on Biomedical Engineering, 54(12), 2296–2299.CrossRef Salarian, A., Russmann, H., Vingerhoets, F. J., Burkhard, P. R., & Aminian, K. (2007). Ambulatory monitoring of physical activities in patients with Parkinson’s disease. IEEE Transactions on Biomedical Engineering, 54(12), 2296–2299.CrossRef
58.
go back to reference Chen, Y. P., Yang, J. Y., Liou, S. N., Lee, G. Y., & Wang, J. S. (2008). Online classifier construction algorithm for human activity detection using a tri-axial accelerometer. Applied Mathematics and Computation, 205(2), 849–860.MathSciNetCrossRef Chen, Y. P., Yang, J. Y., Liou, S. N., Lee, G. Y., & Wang, J. S. (2008). Online classifier construction algorithm for human activity detection using a tri-axial accelerometer. Applied Mathematics and Computation, 205(2), 849–860.MathSciNetCrossRef
59.
go back to reference He, Z. Y., & Jin, L. W. (2008). Activity recognition from acceleration data using AR model representation and SVM. In International conference on machine learning and cybernetics (pp. 2245–2250). IEEE. He, Z. Y., & Jin, L. W. (2008). Activity recognition from acceleration data using AR model representation and SVM. In International conference on machine learning and cybernetics (pp. 2245–2250). IEEE.
60.
go back to reference Yang, J. Y., Wang, J. S., & Chen, Y. P. (2008). Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers. Pattern Recognition Letters, 29(16), 2213–2220.CrossRef Yang, J. Y., Wang, J. S., & Chen, Y. P. (2008). Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers. Pattern Recognition Letters, 29(16), 2213–2220.CrossRef
61.
go back to reference Yeoh, W. S., Pek, I., Yong, Y. H., Chen, X., & Waluyo, A. B. (2008), August. Ambulatory monitoring of human posture and walking speed using wearable accelerometer sensors. In 30th Annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008 (pp. 5184–5187). Yeoh, W. S., Pek, I., Yong, Y. H., Chen, X., & Waluyo, A. B. (2008), August. Ambulatory monitoring of human posture and walking speed using wearable accelerometer sensors. In 30th Annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008 (pp. 5184–5187).
62.
go back to reference Bonomi, A. G., Goris, A. H., Yin, B., & Westerterp, K. R. (2009). Detection of type, duration, and intensity of physical activity using an accelerometer. Medicine & Science in Sports & Exercise, 41(9), 1770–1777.CrossRef Bonomi, A. G., Goris, A. H., Yin, B., & Westerterp, K. R. (2009). Detection of type, duration, and intensity of physical activity using an accelerometer. Medicine & Science in Sports & Exercise, 41(9), 1770–1777.CrossRef
63.
go back to reference Hanai, Y., Nishimura, J., & Kuroda, T. (2009). Haar-like filtering for human activity recognition using 3D accelerometer. In Digital signal processing workshop and 5th IEEE signal processing education workshop, DSP/SPE 2009 (pp. 675–678). IEEE. Hanai, Y., Nishimura, J., & Kuroda, T. (2009). Haar-like filtering for human activity recognition using 3D accelerometer. In Digital signal processing workshop and 5th IEEE signal processing education workshop, DSP/SPE 2009 (pp. 675–678). IEEE.
64.
go back to reference Altun, K., & Barshan, B. (2010). Human activity recognition using inertial/magnetic sensor units. In International workshop on human behavior understanding (pp. 38–51). Springer. Altun, K., & Barshan, B. (2010). Human activity recognition using inertial/magnetic sensor units. In International workshop on human behavior understanding (pp. 38–51). Springer.
65.
go back to reference Cheng, J., Amft, O., & Lukowicz, P. (2010). Active capacitive sensing: Exploring a new wearable sensing modality for activity recognition. In International conference on pervasive computing (pp. 319–336). Springer. Cheng, J., Amft, O., & Lukowicz, P. (2010). Active capacitive sensing: Exploring a new wearable sensing modality for activity recognition. In International conference on pervasive computing (pp. 319–336). Springer.
66.
go back to reference Gjoreski, H., Lustrek, M., & Gams, M. (2011), July. Accelerometer placement for posture recognition and fall detection. In 7th International conference on intelligent environments (IE) (pp. 47–54). IEEE. Gjoreski, H., Lustrek, M., & Gams, M. (2011), July. Accelerometer placement for posture recognition and fall detection. In 7th International conference on intelligent environments (IE) (pp. 47–54). IEEE.
67.
go back to reference Chamroukhi, F., Mohammed, S., Trabelsi, D., Oukhellou, L., & Amirat, Y. (2013). Joint segmentation of multivariate time series with hidden process regression for human activity recognition. Neurocomputing, 120, 633–644.CrossRef Chamroukhi, F., Mohammed, S., Trabelsi, D., Oukhellou, L., & Amirat, Y. (2013). Joint segmentation of multivariate time series with hidden process regression for human activity recognition. Neurocomputing, 120, 633–644.CrossRef
68.
go back to reference Bayat, A., Pomplun, M., & Tran, D. A. (2014). A study on human activity recognition using accelerometer data from smartphones. Procedia Computer Science, 34, 450–457.CrossRef Bayat, A., Pomplun, M., & Tran, D. A. (2014). A study on human activity recognition using accelerometer data from smartphones. Procedia Computer Science, 34, 450–457.CrossRef
69.
go back to reference Gao, L., Bourke, A. K., & Nelson, J. (2014). Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Medical Engineering & Physics, 36(6), 779–785.CrossRef Gao, L., Bourke, A. K., & Nelson, J. (2014). Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Medical Engineering & Physics, 36(6), 779–785.CrossRef
70.
go back to reference Gupta, P., & Dallas, T. (2014). Feature selection and activity recognition system using a single triaxial accelerometer. IEEE Transactions on Biomedical Engineering, 61(6), 1780–1786.CrossRef Gupta, P., & Dallas, T. (2014). Feature selection and activity recognition system using a single triaxial accelerometer. IEEE Transactions on Biomedical Engineering, 61(6), 1780–1786.CrossRef
71.
go back to reference Moncada-Torres, A., Leuenberger, K., Gonzenbach, R., Luft, A., & Gassert, R. (2014). Activity classification based on inertial and barometric pressure sensors at different anatomical locations. Physiological Measurement, 35(7), 1245.CrossRef Moncada-Torres, A., Leuenberger, K., Gonzenbach, R., Luft, A., & Gassert, R. (2014). Activity classification based on inertial and barometric pressure sensors at different anatomical locations. Physiological Measurement, 35(7), 1245.CrossRef
72.
go back to reference Mass, F., Gonzenbach, R. R., Arami, A., Paraschiv-Ionescu, A., Luft, A. R., & Aminian, K. (2015). Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients. Journal of Neuroengineering and Rehabilitation, 12(1), 72.CrossRef Mass, F., Gonzenbach, R. R., Arami, A., Paraschiv-Ionescu, A., Luft, A. R., & Aminian, K. (2015). Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients. Journal of Neuroengineering and Rehabilitation, 12(1), 72.CrossRef
73.
go back to reference Rezaie, H., & Ghassemian, M. (2017). An adaptive algorithm to improve energy efficiency in wearable activity recognition systems. IEEE Sensors Journal, 17(16), 5315–5323.CrossRef Rezaie, H., & Ghassemian, M. (2017). An adaptive algorithm to improve energy efficiency in wearable activity recognition systems. IEEE Sensors Journal, 17(16), 5315–5323.CrossRef
74.
go back to reference Egbogah, E. E., & Fapojuwo, A. O. (2011). A survey of system architecture requirements for health care-based wireless sensor networks. Sensors, 11(5), 4875–4898.CrossRef Egbogah, E. E., & Fapojuwo, A. O. (2011). A survey of system architecture requirements for health care-based wireless sensor networks. Sensors, 11(5), 4875–4898.CrossRef
Metadata
Title
Comparison Analysis of Radio_Based and Sensor_Based Wearable Human Activity Recognition Systems
Authors
Hamed Rezaie
Mona Ghassemian
Publication date
18-04-2018
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2018
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5715-4

Other articles of this Issue 2/2018

Wireless Personal Communications 2/2018 Go to the issue