Skip to main content
Top
Published in: Strength of Materials 1/2016

28-03-2016

Compression Deformation Behavior and Processing Map of Pure Copper

Authors: S. H. Huang, S. X. Chai, X. S. Xia, Q. Chen, D. Y. Shu

Published in: Strength of Materials | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To reveal the compression deformation behavior of pure copper, the deformation characteristics of pure copper have been investigated by means of compression tests in the temperature range of 400–900°C and strain rate range of 0.001–1 s–1. The results show that the flow stress of pure copper increases with strain rate and decreasing deformation temperature, which is characterized by work-hardening, dynamic recovery, dynamic recrystallization, secondary work-hardening, etc. The activation energy of hot deformation is associated with deformation temperature and strain rate, and the average activation energy is calculated to be 303.8 kJ/mol. The flow stress prediction model based on GA+BP network provides a very good agreement with the true stress curve, which is instrumental for the guidance of hot working of pure copper. The flow instability occurs in the intermediate strain rate range (0.01–0.1 s–1). Based on the processing map anakysis, the high power dissipation corresponds to the dynamic recrystallization. Appropriate reduction of the deformation temperature or increased strain rate are beneficial for the grain refinement in the steady-state range of the processing map.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. H. Tian, A. L. Fan, H. Y. Gao, et al., “Comparison of microstructures in electroformed copper liners of shaped charges before and after plastic deformation at different strain rates,” Mater. Sci. Eng. A, 350, 160–167 (2003).CrossRef W. H. Tian, A. L. Fan, H. Y. Gao, et al., “Comparison of microstructures in electroformed copper liners of shaped charges before and after plastic deformation at different strain rates,” Mater. Sci. Eng. A, 350, 160–167 (2003).CrossRef
2.
go back to reference A. L. Fan, S. K. Li, W. H. Tian, and F. C. Wang, “Comparison of microstructures in electroformed and spin-formed copper liners of shaped charge undergone high-strain-rate deformation,” Trans. Nonferrous Met. Soc. China, 17, 1447–1450 (2007).CrossRef A. L. Fan, S. K. Li, W. H. Tian, and F. C. Wang, “Comparison of microstructures in electroformed and spin-formed copper liners of shaped charge undergone high-strain-rate deformation,” Trans. Nonferrous Met. Soc. China, 17, 1447–1450 (2007).CrossRef
3.
go back to reference A. L. Fan, S. K. Li, and W. H. Tian, “Grain growth and texture evolution in electroformed copper liners of shaped charges,” Mater. Sci. Eng. A, 474, 208–213 (2008).CrossRef A. L. Fan, S. K. Li, and W. H. Tian, “Grain growth and texture evolution in electroformed copper liners of shaped charges,” Mater. Sci. Eng. A, 474, 208–213 (2008).CrossRef
4.
go back to reference O. Ozhoga-Maslovskaja, K. Naumenko, H. Altenbach, and O. Prygorniev, “Micromechanical simulation of grain boundary cavitation in copper considering nonproportional loading,” Comput. Mater. Sci., 96, 178–184 (2015).CrossRef O. Ozhoga-Maslovskaja, K. Naumenko, H. Altenbach, and O. Prygorniev, “Micromechanical simulation of grain boundary cavitation in copper considering nonproportional loading,” Comput. Mater. Sci., 96, 178–184 (2015).CrossRef
5.
go back to reference Z. L. Wang, H. P. Wang, Z. H. Hou, et al., “Dynamic consolidation of W-Cu nano-alloy and its performance as liner materials,” Rare Metal Mat. Eng., 43, No. 5, 1051–1055 (2014).CrossRef Z. L. Wang, H. P. Wang, Z. H. Hou, et al., “Dynamic consolidation of W-Cu nano-alloy and its performance as liner materials,” Rare Metal Mat. Eng., 43, No. 5, 1051–1055 (2014).CrossRef
6.
go back to reference C. W. Tan, S. N. Xu, L. Wang, et al., “Deformation behavior of AZ31 magnesium alloy at different strain rates and temperatures,” Trans. Nonferrous Met. Soc. China, 17, 347–352 (2007). C. W. Tan, S. N. Xu, L. Wang, et al., “Deformation behavior of AZ31 magnesium alloy at different strain rates and temperatures,” Trans. Nonferrous Met. Soc. China, 17, 347–352 (2007).
7.
go back to reference F. Zhang, J. Shen, X. D. Yan, and J. L. Sun, “Constitutive analysis to predict high-temperature flow stress in 2099 Al-Li alloy,” Rare Metal Mat. Eng., 43, No. 6, 1312–1318 (2014).CrossRef F. Zhang, J. Shen, X. D. Yan, and J. L. Sun, “Constitutive analysis to predict high-temperature flow stress in 2099 Al-Li alloy,” Rare Metal Mat. Eng., 43, No. 6, 1312–1318 (2014).CrossRef
8.
go back to reference W. Li, H. Li, Z. X. Wang, and Z. Q. Zheng, “Constitutive equations for high temperature flow stress prediction of Al-14Cu-7Ce alloy,” Mater. Sci. Eng. A, 528, 4098–4103 (2011).CrossRef W. Li, H. Li, Z. X. Wang, and Z. Q. Zheng, “Constitutive equations for high temperature flow stress prediction of Al-14Cu-7Ce alloy,” Mater. Sci. Eng. A, 528, 4098–4103 (2011).CrossRef
9.
go back to reference M. A. Jabbari Taleghani, E. M. Ruiz Navas, M. Salehi, and J. M. Torralba, “Hot deformation behaviour and flow stress prediction of 7075 aluminium alloy powder compacts during compression at elevated temperatures,” Mater. Sci. Eng. A, 534, 624–631 (2012).CrossRef M. A. Jabbari Taleghani, E. M. Ruiz Navas, M. Salehi, and J. M. Torralba, “Hot deformation behaviour and flow stress prediction of 7075 aluminium alloy powder compacts during compression at elevated temperatures,” Mater. Sci. Eng. A, 534, 624–631 (2012).CrossRef
10.
go back to reference H. Mirzadeh and A. Najafizadeh, “Flow stress prediction at hot working conditions,” Mater. Sci. Eng. A, 527, 1160–1164 (2010).CrossRef H. Mirzadeh and A. Najafizadeh, “Flow stress prediction at hot working conditions,” Mater. Sci. Eng. A, 527, 1160–1164 (2010).CrossRef
11.
go back to reference A. K. Maheshwari, “Prediction of flow stress for hot deformation processing,” Comput. Mater. Sci., 69, 350–358 (2013).CrossRef A. K. Maheshwari, “Prediction of flow stress for hot deformation processing,” Comput. Mater. Sci., 69, 350–358 (2013).CrossRef
12.
go back to reference S. Serajzadeh and A. K. Taheri, “Prediction of flow stress at hot working condition,” Mech. Res. Commun., 30, 87–93 (2003).CrossRef S. Serajzadeh and A. K. Taheri, “Prediction of flow stress at hot working condition,” Mech. Res. Commun., 30, 87–93 (2003).CrossRef
13.
go back to reference G. Z. Quan, W. Q. Lv, Y. P. Mao, et al., “Prediction of flow stress in a wide temperature range involving phase transformation for as-cast Ti-6Al-2Zr-1Mo-1V alloy by artificial neural network,” Mater. Des., 50, 51–61 (2013).CrossRef G. Z. Quan, W. Q. Lv, Y. P. Mao, et al., “Prediction of flow stress in a wide temperature range involving phase transformation for as-cast Ti-6Al-2Zr-1Mo-1V alloy by artificial neural network,” Mater. Des., 50, 51–61 (2013).CrossRef
14.
go back to reference A. K. Gupta, S. K. Singh, S. Reddy, and G. Hariharan, “Prediction of flow stress in dynamic strain aging regime of austenitic stainless steel 316 using artificial neural network,” Mater. Des., 35, 589–595 (2012).CrossRef A. K. Gupta, S. K. Singh, S. Reddy, and G. Hariharan, “Prediction of flow stress in dynamic strain aging regime of austenitic stainless steel 316 using artificial neural network,” Mater. Des., 35, 589–595 (2012).CrossRef
15.
go back to reference X. S. Xia, Q. Chen, K. Zhang, et al., “Hot deformation behavior and processing map of coarse-grained Mg-Gd-Y-Nd-Zr alloy,” Mater. Sci. Eng. A, 587, 283–290 (2013).CrossRef X. S. Xia, Q. Chen, K. Zhang, et al., “Hot deformation behavior and processing map of coarse-grained Mg-Gd-Y-Nd-Zr alloy,” Mater. Sci. Eng. A, 587, 283–290 (2013).CrossRef
16.
go back to reference F. A. Slooff, J. S. Dzwonczyk, J. Zhou, et al., “Hot workability analysis of extruded AZ magnesium alloys with processing maps,” Mater. Sci. Eng. A, 527, 735–744 (2010).CrossRef F. A. Slooff, J. S. Dzwonczyk, J. Zhou, et al., “Hot workability analysis of extruded AZ magnesium alloys with processing maps,” Mater. Sci. Eng. A, 527, 735–744 (2010).CrossRef
17.
go back to reference G. Meng, B. L. Li, H. M. Li, et al., “Hot deformation and processing maps of an Al-5.7 wt.% Mg alloy with erbium,” Mater. Sci. Eng. A, 517, 132–137 (2009).CrossRef G. Meng, B. L. Li, H. M. Li, et al., “Hot deformation and processing maps of an Al-5.7 wt.% Mg alloy with erbium,” Mater. Sci. Eng. A, 517, 132–137 (2009).CrossRef
18.
go back to reference Y. V. R. K. Prasad and K. P. Rao, “Effect of homogenization on the hot deformation behavior of cast AZ31 magnesium alloy,” Mater. Des., 30, 3723–3730 (2009).CrossRef Y. V. R. K. Prasad and K. P. Rao, “Effect of homogenization on the hot deformation behavior of cast AZ31 magnesium alloy,” Mater. Des., 30, 3723–3730 (2009).CrossRef
Metadata
Title
Compression Deformation Behavior and Processing Map of Pure Copper
Authors
S. H. Huang
S. X. Chai
X. S. Xia
Q. Chen
D. Y. Shu
Publication date
28-03-2016
Publisher
Springer US
Published in
Strength of Materials / Issue 1/2016
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-016-9743-6

Other articles of this Issue 1/2016

Strength of Materials 1/2016 Go to the issue

Premium Partners