Skip to main content
Top

2018 | OriginalPaper | Chapter

3. Computation of Farfield Diffraction Characteristics of Radial and Annular Walsh Filters on the Pupil of Axisymmetric Imaging Systems

Authors : Lakshminarayan Hazra, Pubali Mukherjee

Published in: Self-similarity in Walsh Functions and in the Farfield Diffraction Patterns of Radial Walsh Filters

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pupil plane filtering by Walsh filters is a convenient technique for tailoring the intensity distribution of light near the focal plane of a rotationally symmetric imaging system. Walsh filters, derived from Walsh functions, form a set of orthogonal phase filters that take on values either 0 or π phase, corresponding to +1 or −1 values of the Walsh functions over prespecified annular regions of the circular filter. Order of these filters is given by the number of zero-crossings, or equivalently phase transitions within the domain over which the set is defined. In general, Walsh filters are binary phase zone plates, each of them demonstrating distinct focusing characteristics. With a backdrop of pupil plane filtering for image enhancement and a brief description of different types of zone plates for manipulation of axial intensity distribution, this chapter puts forward the inherent potential of Walsh filters in this context. The mathematical formulation utilized for computing the transverse and axial intensity distributions in and around the image/focal plane, when radial and annular Walsh filters are placed on the exit pupil of an axisymmetric imaging system, is presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Toraldo di Francia G (1958) La Diffrazione Delle Luce, Edizioni Scientifiche Einaudi Toraldo di Francia G (1958) La Diffrazione Delle Luce, Edizioni Scientifiche Einaudi
2.
go back to reference Toraldo di Francia G (1952) Super-gain antennas and optical resolving power. Nuovo Cimento Supple 9(3):426–438CrossRef Toraldo di Francia G (1952) Super-gain antennas and optical resolving power. Nuovo Cimento Supple 9(3):426–438CrossRef
3.
go back to reference Toraldo di Francia G (1952) Nuovo pupille superresolventi. Atti Fond Giorgio Ronchi 7:366–372 Toraldo di Francia G (1952) Nuovo pupille superresolventi. Atti Fond Giorgio Ronchi 7:366–372
4.
go back to reference Brown BR, Lohmann AW (1966) Complex spatial filtering with binary marks. Appl Opt 5(6):967–969CrossRef Brown BR, Lohmann AW (1966) Complex spatial filtering with binary marks. Appl Opt 5(6):967–969CrossRef
5.
go back to reference Kartashev AI (1960) Optical systems with enhanced resolving power. Opt Spectrosc 9:204–206 Kartashev AI (1960) Optical systems with enhanced resolving power. Opt Spectrosc 9:204–206
6.
go back to reference Lukosz W (1966) Optical systems with resolving power exceeding the classical limit. J Opt Soc Am 56(11):1463–1472CrossRef Lukosz W (1966) Optical systems with resolving power exceeding the classical limit. J Opt Soc Am 56(11):1463–1472CrossRef
7.
go back to reference Frieden BR (1969) On arbitrarily perfect imaging with a finite aperture. Opt Acta 16(6):795–807CrossRef Frieden BR (1969) On arbitrarily perfect imaging with a finite aperture. Opt Acta 16(6):795–807CrossRef
8.
go back to reference Frieden BR (1971) VIII Evaluation, design and extrapolation methods for optical signals based on use of the prolate functions. In: Wolf E (ed), North Holland. Prog Opt 9:311–407 Frieden BR (1971) VIII Evaluation, design and extrapolation methods for optical signals based on use of the prolate functions. In: Wolf E (ed), North Holland. Prog Opt 9:311–407
9.
go back to reference Boyer GR, Sechaud M (1973) Superresolution by Taylor filters. Appl Opt 17(4):893–894 Boyer GR, Sechaud M (1973) Superresolution by Taylor filters. Appl Opt 17(4):893–894
10.
go back to reference Boyer GR (1976) Pupil filters for moderate superresolution. Appl Opt 15(12):3089–3093CrossRef Boyer GR (1976) Pupil filters for moderate superresolution. Appl Opt 15(12):3089–3093CrossRef
11.
go back to reference Boyer GR (1983) Realisation d’un filtrage super-resolvant. Opt Acta 30:807–816CrossRef Boyer GR (1983) Realisation d’un filtrage super-resolvant. Opt Acta 30:807–816CrossRef
12.
go back to reference Boivin R, Boivin A (1980) Optimized amplitude filtering for superresolution over a restricted field. I. Achievement of maximum central irradiance under an energy constraint. Opt Acta 27(5):587–610CrossRef Boivin R, Boivin A (1980) Optimized amplitude filtering for superresolution over a restricted field. I. Achievement of maximum central irradiance under an energy constraint. Opt Acta 27(5):587–610CrossRef
13.
go back to reference Boivin R, Boivin A (1980) Optimized amplitude filtering for superresolution over a restricted field. II. Application of the impulse generating filter. Opt Acta 27:1641–1670CrossRef Boivin R, Boivin A (1980) Optimized amplitude filtering for superresolution over a restricted field. II. Application of the impulse generating filter. Opt Acta 27:1641–1670CrossRef
14.
go back to reference Boivin R, Boivin A (1983) Optimized amplitude filtering for superresolution over a restricted field. III. Effects due to variation of the field extent. Opt Acta 30:681–688CrossRef Boivin R, Boivin A (1983) Optimized amplitude filtering for superresolution over a restricted field. III. Effects due to variation of the field extent. Opt Acta 30:681–688CrossRef
15.
go back to reference Cox IJ, Sheppard CJR, Wilson T (1982) Reappraisal of arrays of concentric annuli as superresolving filters. J Opt Soz Am 72(9):1287–1291CrossRef Cox IJ, Sheppard CJR, Wilson T (1982) Reappraisal of arrays of concentric annuli as superresolving filters. J Opt Soz Am 72(9):1287–1291CrossRef
16.
go back to reference Hegedus ZS, Sarafis V (1986) Superresolving filters in confocally scanned imaging systems. J Opt Soc Am A 3(11):1892–1896CrossRef Hegedus ZS, Sarafis V (1986) Superresolving filters in confocally scanned imaging systems. J Opt Soc Am A 3(11):1892–1896CrossRef
17.
go back to reference Sales TRM, Morris GM (1997) Diffractive superresolution elements. J Opt Soc Am A 14(7):1637–1646CrossRef Sales TRM, Morris GM (1997) Diffractive superresolution elements. J Opt Soc Am A 14(7):1637–1646CrossRef
18.
go back to reference Ojeda-Castaneda J, Andrés P, Diaz A (1986) Annular apodizers for low sensitivity to defocus and to spherical aberration. Opt Lett 11(8):487–489CrossRef Ojeda-Castaneda J, Andrés P, Diaz A (1986) Annular apodizers for low sensitivity to defocus and to spherical aberration. Opt Lett 11(8):487–489CrossRef
19.
go back to reference Sheppard CJR, Hegedus ZS (1988) Axial behavior of pupil plane filters. J Opt Soc Am A 5(5):643–647CrossRef Sheppard CJR, Hegedus ZS (1988) Axial behavior of pupil plane filters. J Opt Soc Am A 5(5):643–647CrossRef
20.
go back to reference Hazra LN (1977) A new class of optimum amplitude filters. Opt Commun 21(2):232–236CrossRef Hazra LN (1977) A new class of optimum amplitude filters. Opt Commun 21(2):232–236CrossRef
21.
go back to reference Ding H, Li Q, Zou W (2004) Design and comparison of amplitude-type and phase-only transverse super-resolving pupil filters. Opt Commun 229(1–6):117–122CrossRef Ding H, Li Q, Zou W (2004) Design and comparison of amplitude-type and phase-only transverse super-resolving pupil filters. Opt Commun 229(1–6):117–122CrossRef
22.
go back to reference Sheppard CJR, Sharma MD, Arbouet A (2000) Axial apodizing filters for confocal imaging. Optik 111(8):347–354 Sheppard CJR, Sharma MD, Arbouet A (2000) Axial apodizing filters for confocal imaging. Optik 111(8):347–354
23.
go back to reference Yun M, Wang M, Liu L (2006) Transverse superresolution with the radial continuous transmittance filter. Optik 117(5):240–245CrossRef Yun M, Wang M, Liu L (2006) Transverse superresolution with the radial continuous transmittance filter. Optik 117(5):240–245CrossRef
24.
go back to reference Sales TRM, Morris GM (1998) Axial superresolution with phase-only pupil filters. Opt Commun 156(4–6):227–230CrossRef Sales TRM, Morris GM (1998) Axial superresolution with phase-only pupil filters. Opt Commun 156(4–6):227–230CrossRef
25.
go back to reference Martinez-Corral M, Caballero MT, Stelzer EHK, Swoger J (2002) Tailoring the axial shape of the point spread function using the Toraldo concept. Opt Express 10(1):98–103CrossRef Martinez-Corral M, Caballero MT, Stelzer EHK, Swoger J (2002) Tailoring the axial shape of the point spread function using the Toraldo concept. Opt Express 10(1):98–103CrossRef
26.
go back to reference Luo H, Zhou C (2004) Comparison of superresolution effects with annular phase and amplitude filters. Appl Opt 43(34):6242–6247CrossRef Luo H, Zhou C (2004) Comparison of superresolution effects with annular phase and amplitude filters. Appl Opt 43(34):6242–6247CrossRef
27.
go back to reference Liu X, Liu L, Liu D, Bai L (2006) Design and application of three-zone annular filters. Optik 117(10):453–461CrossRef Liu X, Liu L, Liu D, Bai L (2006) Design and application of three-zone annular filters. Optik 117(10):453–461CrossRef
28.
go back to reference Sheppard CJR, Campos J, Escalera JC, Ledesma S (2008) Two-zone pupil filters. Opt Commun 281:913–922CrossRef Sheppard CJR, Campos J, Escalera JC, Ledesma S (2008) Two-zone pupil filters. Opt Commun 281:913–922CrossRef
29.
go back to reference Sheppard CJR, Campos J, Escalera JC, Ledesma S (2008) Three-zone pupil filters. Opt Commun 281:3623–3630CrossRef Sheppard CJR, Campos J, Escalera JC, Ledesma S (2008) Three-zone pupil filters. Opt Commun 281:3623–3630CrossRef
30.
go back to reference Martinez-Corral M, Andrés P, Ojeda-Castaneda J (1994) On-axis diffractional behavior of two dimensional pupils. Appl Opt 33(11):2223–2229CrossRef Martinez-Corral M, Andrés P, Ojeda-Castaneda J (1994) On-axis diffractional behavior of two dimensional pupils. Appl Opt 33(11):2223–2229CrossRef
31.
go back to reference Martinez-Corral M, Andrés P, Ojeda-Castaneda J, Saavedra G (1995) Tunable axial superresolution by annular binary filters. Application to confocal microscopy. Opt Commun 119(5–6):491–498CrossRef Martinez-Corral M, Andrés P, Ojeda-Castaneda J, Saavedra G (1995) Tunable axial superresolution by annular binary filters. Application to confocal microscopy. Opt Commun 119(5–6):491–498CrossRef
32.
go back to reference Ledesma S, Campos J, Escalera JC, Yzuel MJ (2004) Simple expressions for performance parameters of complex filters, with applications to super-Gaussian phase filters. Opt Lett 29(9):932–934CrossRef Ledesma S, Campos J, Escalera JC, Yzuel MJ (2004) Simple expressions for performance parameters of complex filters, with applications to super-Gaussian phase filters. Opt Lett 29(9):932–934CrossRef
33.
go back to reference Ledesma S, Escalera JC, Campos J, Yzuel MJ (2005) Evolution of the transverse response of an optical system with complex filters. Opt Commun 249(1–3):183–192CrossRef Ledesma S, Escalera JC, Campos J, Yzuel MJ (2005) Evolution of the transverse response of an optical system with complex filters. Opt Commun 249(1–3):183–192CrossRef
34.
go back to reference Jabbour TG, Petrovich M, Kuebler SM (2008) Design of axially super resolving phase filters using the method of generalized projection. Opt Commun 281(8):2002–2011CrossRef Jabbour TG, Petrovich M, Kuebler SM (2008) Design of axially super resolving phase filters using the method of generalized projection. Opt Commun 281(8):2002–2011CrossRef
35.
36.
go back to reference Martínez-Corral M, Saavedra G (2009) The resolution challenge in 3D optical microscopy. In: Wolf E (ed). Prog Opt 53:1–67 Martínez-Corral M, Saavedra G (2009) The resolution challenge in 3D optical microscopy. In: Wolf E (ed). Prog Opt 53:1–67
37.
go back to reference Hazra LN, Reza N (2010) Optimal design of Toraldo super resolving filters. In: Procedings of SPIE 7787, Novel Optical Systems Design and Optimization XIII, 77870D Hazra LN, Reza N (2010) Optimal design of Toraldo super resolving filters. In: Procedings of SPIE 7787, Novel Optical Systems Design and Optimization XIII, 77870D
38.
go back to reference Sheppard CJR (2011) Binary phase filters with a maximally flat response. Opt Lett 36(8):1386–1388CrossRef Sheppard CJR (2011) Binary phase filters with a maximally flat response. Opt Lett 36(8):1386–1388CrossRef
39.
go back to reference Leizerson I, Lipson SG, Sarafis V (2002) Superresolution in far-field imaging. J Opt Soc Am A 19(3):436–443CrossRef Leizerson I, Lipson SG, Sarafis V (2002) Superresolution in far-field imaging. J Opt Soc Am A 19(3):436–443CrossRef
40.
go back to reference Martinez-Corral M, Ibáñez-López C, Caballero MT, Saavedra G (2003) Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters. Opt Express 11(15):1740–1745CrossRef Martinez-Corral M, Ibáñez-López C, Caballero MT, Saavedra G (2003) Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters. Opt Express 11(15):1740–1745CrossRef
41.
go back to reference Hegedus ZS (1985) Annular pupil arrays—application to confocal scanning. Opt Acta 32(7):815–826CrossRef Hegedus ZS (1985) Annular pupil arrays—application to confocal scanning. Opt Acta 32(7):815–826CrossRef
42.
go back to reference Reza N, Hazra LN (2013) Toraldo filters with concentric unequal annuli of fixed phase by evolutionary programming. J Opt Soc Am A 30(2):189–195CrossRef Reza N, Hazra LN (2013) Toraldo filters with concentric unequal annuli of fixed phase by evolutionary programming. J Opt Soc Am A 30(2):189–195CrossRef
43.
go back to reference Hazra LN, Reza N (2010) Superresolution by pupil plane phase filtering. Pramana J Phys 75(5):855–867CrossRef Hazra LN, Reza N (2010) Superresolution by pupil plane phase filtering. Pramana J Phys 75(5):855–867CrossRef
44.
go back to reference de Juana DM, Canales VF, Valle PJ, Cagigal MP (2004) Focusing properties of annular binary phase filters. Opt Commun 229:71–77 de Juana DM, Canales VF, Valle PJ, Cagigal MP (2004) Focusing properties of annular binary phase filters. Opt Commun 229:71–77
45.
go back to reference Sheppard CJR, Calvert G, Wheatland M (1998) Focal distribution for superresolving toraldo filters. J Opt Soc Am A 15(4):849–856CrossRef Sheppard CJR, Calvert G, Wheatland M (1998) Focal distribution for superresolving toraldo filters. J Opt Soc Am A 15(4):849–856CrossRef
46.
go back to reference de Juana DM, Oti JE, Canales VF, Cagigal MP (2003) Transverse or axial superresolution in a 4Pi-confocal microscope by phase-only filters. J Opt Soc Am A 20(11):2172–2178CrossRef de Juana DM, Oti JE, Canales VF, Cagigal MP (2003) Transverse or axial superresolution in a 4Pi-confocal microscope by phase-only filters. J Opt Soc Am A 20(11):2172–2178CrossRef
47.
go back to reference Yun M, Liu L, Sun J, Liu D (2005) Three-dimensional superresolution by three-zone complex pupil filters. J Opt Soc Am A 22(2):272–277CrossRef Yun M, Liu L, Sun J, Liu D (2005) Three-dimensional superresolution by three-zone complex pupil filters. J Opt Soc Am A 22(2):272–277CrossRef
48.
go back to reference Martinez-Corral M, Andres P, Zapata-Rodrıguez CJ, Kowalczyk M (1999) Three-dimensional superresolution by annular binary filters. Opt Commun 165:267–278 Martinez-Corral M, Andres P, Zapata-Rodrıguez CJ, Kowalczyk M (1999) Three-dimensional superresolution by annular binary filters. Opt Commun 165:267–278
49.
go back to reference Ledesma S, Campos J, Escalera JC, Yzuel MJ (2004) Symmetry properties with pupil phase-filters. Opt Express 12(11):2548–2559CrossRef Ledesma S, Campos J, Escalera JC, Yzuel MJ (2004) Symmetry properties with pupil phase-filters. Opt Express 12(11):2548–2559CrossRef
50.
go back to reference Canales VF, Oti JE, Cagigal MP (2005) Three dimensional control of focal light intensity distribution by analytically designed phase masks. Opt Commun 247:11–18CrossRef Canales VF, Oti JE, Cagigal MP (2005) Three dimensional control of focal light intensity distribution by analytically designed phase masks. Opt Commun 247:11–18CrossRef
51.
go back to reference Cagigal MP, Oti JE, Canales VF, Valle PJ (2004) Analytical design of superresolving phase filters. Opt Commun 241:249–253CrossRef Cagigal MP, Oti JE, Canales VF, Valle PJ (2004) Analytical design of superresolving phase filters. Opt Commun 241:249–253CrossRef
52.
go back to reference Piestun R, Shamir J (2002) Synthesis of three dimensional light fields and applications. Proc IEEE 90(2):222–244CrossRef Piestun R, Shamir J (2002) Synthesis of three dimensional light fields and applications. Proc IEEE 90(2):222–244CrossRef
53.
go back to reference Konijnenberg AP, Pereira SF (2015) Pupil Engineering to create sheets, lines, and multiple spots at the focal region. J Opt 17(12):125614CrossRef Konijnenberg AP, Pereira SF (2015) Pupil Engineering to create sheets, lines, and multiple spots at the focal region. J Opt 17(12):125614CrossRef
54.
go back to reference Straubel CR (1935) “Über Bildgüte”, Pieter Zeeman Verhandlungen. Nijhoff, The Hague, pp 302–311 Straubel CR (1935) “Über Bildgüte”, Pieter Zeeman Verhandlungen. Nijhoff, The Hague, pp 302–311
55.
go back to reference Jacquinot P, Roizen-Dossier B (1964) Apodization. In: Wolf E (ed). North Holland, Amsterdam. Prog Opt 3 Jacquinot P, Roizen-Dossier B (1964) Apodization. In: Wolf E (ed). North Holland, Amsterdam. Prog Opt 3
56.
go back to reference Zernike F (1934) Beugungstheorie des Schneidenver-fahrens und seiner verbesserten form. Physica 1(8):689–704MATHCrossRef Zernike F (1934) Beugungstheorie des Schneidenver-fahrens und seiner verbesserten form. Physica 1(8):689–704MATHCrossRef
57.
go back to reference Liu J, Miao E, Sui Y, Yang H (2016) Phase only pupil filter design using Zernike polynomials. J Opt Soc Korea 20(1):101–106 Liu J, Miao E, Sui Y, Yang H (2016) Phase only pupil filter design using Zernike polynomials. J Opt Soc Korea 20(1):101–106
58.
go back to reference Slepian D (1965) Analytic solution of two apodization problems. J Opt Soc Am 55(9):1110–1115CrossRef Slepian D (1965) Analytic solution of two apodization problems. J Opt Soc Am 55(9):1110–1115CrossRef
59.
go back to reference Roy Frieden B (1970) The extrapolating pupil, image synthesis, and some thought applications. Appl Opt 9(11):2489–2496 Roy Frieden B (1970) The extrapolating pupil, image synthesis, and some thought applications. Appl Opt 9(11):2489–2496
60.
go back to reference Plight M (1978) The rapid calculation of the optical transfer function for on-axis systems using the orthogonal properties of Tchebycheff polynomials. Optica Acta 25(9):849–860CrossRef Plight M (1978) The rapid calculation of the optical transfer function for on-axis systems using the orthogonal properties of Tchebycheff polynomials. Optica Acta 25(9):849–860CrossRef
61.
go back to reference Hazra LN, Banerjee A (1976) Application of Walsh function in generation of optimum apodizers. J Opt 5:19–26 (India) Hazra LN, Banerjee A (1976) Application of Walsh function in generation of optimum apodizers. J Opt 5:19–26 (India)
62.
go back to reference Hazra LN (2007) Walsh filters in tailoring of resolution in microscopic imaging. Micron 38(2):129–135CrossRef Hazra LN (2007) Walsh filters in tailoring of resolution in microscopic imaging. Micron 38(2):129–135CrossRef
63.
go back to reference Hazra LN, Guha A (1986) Farfield diffraction properties of radial Walsh filters. J Opt Soc Am A 3(6):843–846CrossRef Hazra LN, Guha A (1986) Farfield diffraction properties of radial Walsh filters. J Opt Soc Am A 3(6):843–846CrossRef
64.
go back to reference De M, Hazra LN (1977) Walsh functions in problems of optical imagery. Opt Acta 24(3):221–234CrossRef De M, Hazra LN (1977) Walsh functions in problems of optical imagery. Opt Acta 24(3):221–234CrossRef
65.
go back to reference De M, Hazra LN (1977) On atmospheric turbulence and problem of optimization of the telescopic pupil. Opt Acta 24(3):235–243CrossRef De M, Hazra LN (1977) On atmospheric turbulence and problem of optimization of the telescopic pupil. Opt Acta 24(3):235–243CrossRef
66.
go back to reference Mukherjee P, Hazra LN (2013) Farfield diffraction properties of annular Walsh filters. Adv Opt Tech 2013(360450):6 Mukherjee P, Hazra LN (2013) Farfield diffraction properties of annular Walsh filters. Adv Opt Tech 2013(360450):6
67.
go back to reference Nakamura O, Toyoda K (1991) Side lobe suppression of the point-spread function in annular-pupil optical systems. Appl Opt 30(22):3242–3245CrossRef Nakamura O, Toyoda K (1991) Side lobe suppression of the point-spread function in annular-pupil optical systems. Appl Opt 30(22):3242–3245CrossRef
68.
go back to reference Linfoot EH, Wolf E (1953) Diffraction images in systems with an annular aperture. Proc Phys Soc B 66:145–149CrossRef Linfoot EH, Wolf E (1953) Diffraction images in systems with an annular aperture. Proc Phys Soc B 66:145–149CrossRef
69.
go back to reference Sheppard CJR, Wilson T (1979) Imaging properties of annular lenses. Appl Opt 18(22):3764–3769CrossRef Sheppard CJR, Wilson T (1979) Imaging properties of annular lenses. Appl Opt 18(22):3764–3769CrossRef
70.
go back to reference Boivin A (1964) Théorie et calcul des figures de diffraction de revolution. Gauthier-Villars, Paris Boivin A (1964) Théorie et calcul des figures de diffraction de revolution. Gauthier-Villars, Paris
71.
go back to reference Welford WT (1960) Use of annular apertures to increase focal depth. J Opt Soc Am 50:749–753CrossRef Welford WT (1960) Use of annular apertures to increase focal depth. J Opt Soc Am 50:749–753CrossRef
72.
go back to reference Sheppard CJR, Choudhury A (2004) Annular pupils, radial polarization, and superresolution. Appl Opt 43(22):4322–4327CrossRef Sheppard CJR, Choudhury A (2004) Annular pupils, radial polarization, and superresolution. Appl Opt 43(22):4322–4327CrossRef
73.
go back to reference Yun M, Wang M, Liu L (2005) Superresolution with annular binary phase filter in the 4Pi confocal system. J Opt A: Pure Appl Opt 7(11):640–644CrossRef Yun M, Wang M, Liu L (2005) Superresolution with annular binary phase filter in the 4Pi confocal system. J Opt A: Pure Appl Opt 7(11):640–644CrossRef
74.
go back to reference Mukhopadhyay S, Sarkar S, Bhattacharya K, Hazra LN (2013) Polarization phase shifting interferometric technique for phase calibration of a reflective phase spatial light modulator. Opt Eng 52(3):035602-1–035602-6 Mukhopadhyay S, Sarkar S, Bhattacharya K, Hazra LN (2013) Polarization phase shifting interferometric technique for phase calibration of a reflective phase spatial light modulator. Opt Eng 52(3):035602-1–035602-6
75.
go back to reference Ojeda-Castaneda J, Gómez-Reino C (eds) (1996) Selected papers on zone plates. SPIE Optical Engineering Press, Washington Ojeda-Castaneda J, Gómez-Reino C (eds) (1996) Selected papers on zone plates. SPIE Optical Engineering Press, Washington
76.
go back to reference Lord Rayleigh III, Experimental Notebook 1870–1878 (U. S. Air Force Geophysics Laboratory Research Library, Hanscom Air Force Base, Massachusetts) Lord Rayleigh III, Experimental Notebook 1870–1878 (U. S. Air Force Geophysics Laboratory Research Library, Hanscom Air Force Base, Massachusetts)
77.
go back to reference Soret JL (1875) Ueber die durch kreisgitter erzeugten Diffractionsphanomene. Ann Phys Chem (Poggendorff) Ser 2 156:99–106 Soret JL (1875) Ueber die durch kreisgitter erzeugten Diffractionsphanomene. Ann Phys Chem (Poggendorff) Ser 2 156:99–106
78.
go back to reference Wood RW (1898) Phase-reversal zone-plates and diffraction telescopes. Philos Mag Ser 5 45(227):511–522 Wood RW (1898) Phase-reversal zone-plates and diffraction telescopes. Philos Mag Ser 5 45(227):511–522
79.
go back to reference Horman MH, Chau HHM (1967) Zone plate theory based on holography. Appl Opt 6(2):317–322; Horman MH (1967) Reply to comments on zone plate theory based on holography. Appl Opt 6(8):1415–1418; Efficiencies of zone plates and phase zone plates. Appl Opt 6(11):2011–2013 Horman MH, Chau HHM (1967) Zone plate theory based on holography. Appl Opt 6(2):317–322; Horman MH (1967) Reply to comments on zone plate theory based on holography. Appl Opt 6(8):1415–1418; Efficiencies of zone plates and phase zone plates. Appl Opt 6(11):2011–2013
80.
go back to reference Dammann H (1970) Blazed synthetic phase-only holograms. Optik 31:95–104 (Stuttgart) Dammann H (1970) Blazed synthetic phase-only holograms. Optik 31:95–104 (Stuttgart)
81.
go back to reference Baez AV (1961) Fresnel zone plate for optical image formation using extreme ultraviolet and soft x radiation. J Opt Soc Am 51(4):405–412CrossRef Baez AV (1961) Fresnel zone plate for optical image formation using extreme ultraviolet and soft x radiation. J Opt Soc Am 51(4):405–412CrossRef
82.
go back to reference Pfeifer CD, Ferris LD, Yen WM (1973) Optical image formation with a Fresnel zone plate using vacuum-ultraviolet radiation. J Opt Soc Am 63(1):91–95CrossRef Pfeifer CD, Ferris LD, Yen WM (1973) Optical image formation with a Fresnel zone plate using vacuum-ultraviolet radiation. J Opt Soc Am 63(1):91–95CrossRef
83.
go back to reference Kirz J (1974) Phase zone plates for x rays and the extreme uv. J Opt Soc Am 64(3):301–309CrossRef Kirz J (1974) Phase zone plates for x rays and the extreme uv. J Opt Soc Am 64(3):301–309CrossRef
84.
go back to reference Simpson MJ, Michette AG (1984) Considerations of zone plate optics for soft X-ray microscopy. Opt Acta 34:1417–1426CrossRef Simpson MJ, Michette AG (1984) Considerations of zone plate optics for soft X-ray microscopy. Opt Acta 34:1417–1426CrossRef
85.
go back to reference Tatchyn R, Csonka PL, Landau I (1984) Outline of a variational formulation of zone plate theory. J Opt Soc Am B 1(6):806–811CrossRef Tatchyn R, Csonka PL, Landau I (1984) Outline of a variational formulation of zone plate theory. J Opt Soc Am B 1(6):806–811CrossRef
86.
go back to reference Anderson EH (1988) Fabrication technology and applications of zone plates. In: Hoover RB (ed) Proceedings of SPIE 1160, X-Ray/EUV optics for astronomy and microscopy, SPIE Proceedings, 1990, vol 1160, pp 2–11 Anderson EH (1988) Fabrication technology and applications of zone plates. In: Hoover RB (ed) Proceedings of SPIE 1160, X-Ray/EUV optics for astronomy and microscopy, SPIE Proceedings, 1990, vol 1160, pp 2–11
87.
88.
go back to reference Anderson EH, Kern D (1992) Nanofabrication of zone plate lenses for X-ray microscopy. In: Michette AG, Morrison GR, Buckley CJ (eds) X-ray microscopy III. Springer, Berlin, pp 75–78 Anderson EH, Kern D (1992) Nanofabrication of zone plate lenses for X-ray microscopy. In: Michette AG, Morrison GR, Buckley CJ (eds) X-ray microscopy III. Springer, Berlin, pp 75–78
89.
go back to reference Aristov VV, Basov YA, Snigirev AA (1989) Synchrotron radiation focusing by a Bragg-Fresnel lens. Rev Sci Instrum 60:1517–1518CrossRef Aristov VV, Basov YA, Snigirev AA (1989) Synchrotron radiation focusing by a Bragg-Fresnel lens. Rev Sci Instrum 60:1517–1518CrossRef
90.
go back to reference Malek CK, Ladan FR, Rivoira R (1991) Fabrication of high-resolution multilayer reflection zone plate microlense for the soft X-ray range. Opt Eng 30(8):1081–1085CrossRef Malek CK, Ladan FR, Rivoira R (1991) Fabrication of high-resolution multilayer reflection zone plate microlense for the soft X-ray range. Opt Eng 30(8):1081–1085CrossRef
91.
go back to reference Carnal O, Sigel M, Sleator T, Takuma H, Mlynak J (1991) Imaging and focussing of atoms by a Fresnel zone plate. Phys Rev Lett 67:3231–3234CrossRef Carnal O, Sigel M, Sleator T, Takuma H, Mlynak J (1991) Imaging and focussing of atoms by a Fresnel zone plate. Phys Rev Lett 67:3231–3234CrossRef
92.
go back to reference Wang S, Zhang X (2002) Terahertz tomographic imaging with a Fresnel lens. Opt Photon News 13(12):59CrossRef Wang S, Zhang X (2002) Terahertz tomographic imaging with a Fresnel lens. Opt Photon News 13(12):59CrossRef
93.
go back to reference Wang Y, Yun W, Jacobsen C (2003) Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature 424:50–53CrossRef Wang Y, Yun W, Jacobsen C (2003) Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature 424:50–53CrossRef
94.
go back to reference Kipp L, Skibowski M, Johnson RL, Berndt R, Adelung R, Harm S, Seemann R (2001) Sharper images by focusing soft X-rays with photon sieves. Nature 414:184–188CrossRef Kipp L, Skibowski M, Johnson RL, Berndt R, Adelung R, Harm S, Seemann R (2001) Sharper images by focusing soft X-rays with photon sieves. Nature 414:184–188CrossRef
95.
go back to reference Cao Q, Jahns J (2003) Modified Fresnel zone plates that produce sharp Gaussian focal spots. J Opt Soc Am A 20(8):1576–1581MathSciNetCrossRef Cao Q, Jahns J (2003) Modified Fresnel zone plates that produce sharp Gaussian focal spots. J Opt Soc Am A 20(8):1576–1581MathSciNetCrossRef
96.
go back to reference Cao Q, Jahns J (2004) Comprehensive focusing analysis of various Fresnel zone plates. J Opt Soc Am A 21(4):561–571CrossRef Cao Q, Jahns J (2004) Comprehensive focusing analysis of various Fresnel zone plates. J Opt Soc Am A 21(4):561–571CrossRef
97.
go back to reference Hazra LN, Han Y, Delisle C (1993) Sigmatic imaging by zone plates. J Opt Soc Am A 10(1):69–74CrossRef Hazra LN, Han Y, Delisle C (1993) Sigmatic imaging by zone plates. J Opt Soc Am A 10(1):69–74CrossRef
98.
go back to reference Hazra LN, Han Y, Delisle C (1994) Imaging by zone plates: axial stigmatism at a particular order. J Opt Soc Am A 11(10):2750–2754CrossRef Hazra LN, Han Y, Delisle C (1994) Imaging by zone plates: axial stigmatism at a particular order. J Opt Soc Am A 11(10):2750–2754CrossRef
99.
go back to reference Monsoriu JA, Furlan WD, Saavedra G (2005) Focussing light with fractal zone plates. Recent Res Devel Opt 5 Monsoriu JA, Furlan WD, Saavedra G (2005) Focussing light with fractal zone plates. Recent Res Devel Opt 5
100.
go back to reference Saavedra G, Furlan WD, Monsoriu JA (2003) Fractal zone plates. Opt Lett 28(12):971–973CrossRef Saavedra G, Furlan WD, Monsoriu JA (2003) Fractal zone plates. Opt Lett 28(12):971–973CrossRef
101.
go back to reference Zunino L, Garavaglia M (2003) Fraunhofer diffraction by Cantor fractals with variable lacunarity. J Mod Opt 50(5):717–727CrossRef Zunino L, Garavaglia M (2003) Fraunhofer diffraction by Cantor fractals with variable lacunarity. J Mod Opt 50(5):717–727CrossRef
102.
go back to reference Monsoriu JA, Saavedra G, Furlan WD (2004) Fractal zone plates with variable lacunarity. Opt Express 12(18):4227–4234CrossRef Monsoriu JA, Saavedra G, Furlan WD (2004) Fractal zone plates with variable lacunarity. Opt Express 12(18):4227–4234CrossRef
103.
go back to reference Calatayud A, Ferrando V, Giménez F, Furlan WD, Saavedra G, Monsoriu JA (2013) Fractal square zone plates. Opt Commun 286:42–45CrossRef Calatayud A, Ferrando V, Giménez F, Furlan WD, Saavedra G, Monsoriu JA (2013) Fractal square zone plates. Opt Commun 286:42–45CrossRef
104.
go back to reference Ferrando V, Calatayud A, Giménez F, Furlan WD, Monsoriu JA (2013) Cantor dust zone plates. Opt Express 21(3):2701–2706CrossRef Ferrando V, Calatayud A, Giménez F, Furlan WD, Monsoriu JA (2013) Cantor dust zone plates. Opt Express 21(3):2701–2706CrossRef
105.
go back to reference Furlan WD, Saavedra G, Monsoriu JA (2007) White-light imaging with fractal zone plates. Opt Lett 32(15):2109–2111CrossRef Furlan WD, Saavedra G, Monsoriu JA (2007) White-light imaging with fractal zone plates. Opt Lett 32(15):2109–2111CrossRef
106.
go back to reference Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San Francisco Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San Francisco
107.
go back to reference Yero OM, Alonso MF, Vega GM, Lancis J, Climent V, Monsoriu JA (2009) Fractal generalised zone plates. J Opt Soc Am A 26(5):1161–1166CrossRef Yero OM, Alonso MF, Vega GM, Lancis J, Climent V, Monsoriu JA (2009) Fractal generalised zone plates. J Opt Soc Am A 26(5):1161–1166CrossRef
108.
go back to reference Gimenez F, Monsoriu JA, Furian WD, Pons A (2006) Fractal photon sieve. Opt Express 14(25):11958–11963CrossRef Gimenez F, Monsoriu JA, Furian WD, Pons A (2006) Fractal photon sieve. Opt Express 14(25):11958–11963CrossRef
109.
go back to reference Zhang QQ, Wang JG, Wang MW, Bu J, Zhu SW, Wang R, Gao BZ, Yuan XC (2011) A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography. J Opt 13(5):055301 (6 pages) Zhang QQ, Wang JG, Wang MW, Bu J, Zhu SW, Wang R, Gao BZ, Yuan XC (2011) A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography. J Opt 13(5):055301 (6 pages)
110.
go back to reference Tao SH, Yuan XC, Lin J, Burge RE (2006) Sequence of focused optical vortices generated by a spiral fractal zone plate. Appl Phys Lett 89(3):031105CrossRef Tao SH, Yuan XC, Lin J, Burge RE (2006) Sequence of focused optical vortices generated by a spiral fractal zone plate. Appl Phys Lett 89(3):031105CrossRef
111.
go back to reference Monsoriu JA, Furlan WD, Andrés P, Lancis J (2006) Fractal conical lenses. Opt Express 14(20):9077–9082CrossRef Monsoriu JA, Furlan WD, Andrés P, Lancis J (2006) Fractal conical lenses. Opt Express 14(20):9077–9082CrossRef
112.
go back to reference Melville H, Milne GF (2003) Optical trapping of three-dimensional structures using dynamic holograms. Opt Express 11(26):3562–3567CrossRef Melville H, Milne GF (2003) Optical trapping of three-dimensional structures using dynamic holograms. Opt Express 11(26):3562–3567CrossRef
113.
go back to reference Schonbrun E, Rinzler C, Crozier KB (2008) Microfabricated water immersion zone plate optical tweezer. Appl Phys Lett 92:071112CrossRef Schonbrun E, Rinzler C, Crozier KB (2008) Microfabricated water immersion zone plate optical tweezer. Appl Phys Lett 92:071112CrossRef
114.
go back to reference Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288–290CrossRef Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288–290CrossRef
115.
go back to reference Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809CrossRef Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809CrossRef
116.
go back to reference Dholakia K, Čižmár T (2011) Shaping the future of manipulation. Nat Photonics 5:335–342CrossRef Dholakia K, Čižmár T (2011) Shaping the future of manipulation. Nat Photonics 5:335–342CrossRef
117.
go back to reference Molloy JE, Padgett MJ (2002) Lights, action: optical tweezers. Contemp Phys 43(4):241–258CrossRef Molloy JE, Padgett MJ (2002) Lights, action: optical tweezers. Contemp Phys 43(4):241–258CrossRef
118.
go back to reference Grier DG (2003) A revolution in optical manipulation. Nature 424(6950):810–816 (London)CrossRef Grier DG (2003) A revolution in optical manipulation. Nature 424(6950):810–816 (London)CrossRef
119.
go back to reference Zhang J, Cao Y, Zheng J (2010) Fibonacci quasi-periodic superstructure fiber Bragg gratings. Optik 121(5):417–421CrossRef Zhang J, Cao Y, Zheng J (2010) Fibonacci quasi-periodic superstructure fiber Bragg gratings. Optik 121(5):417–421CrossRef
120.
go back to reference Wu K, Wang GP (2013) One-dimensional Fibonacci grating for far-field super-resolution imaging. Opt Lett 38(12):2032–2034CrossRef Wu K, Wang GP (2013) One-dimensional Fibonacci grating for far-field super-resolution imaging. Opt Lett 38(12):2032–2034CrossRef
121.
go back to reference Calatayud A, Ferrando V, Remon L, Furlan WD, Monsoriu JA (2013) Twin axial vortices generated by Fibonacci lenses. Opt Express 21(8):10234–10239CrossRef Calatayud A, Ferrando V, Remon L, Furlan WD, Monsoriu JA (2013) Twin axial vortices generated by Fibonacci lenses. Opt Express 21(8):10234–10239CrossRef
122.
go back to reference Monsoriu JA, Zapata-Rodriguez CJ, Furlan WD (2006) Fractal axicons. Opt Commun 263:1–5CrossRef Monsoriu JA, Zapata-Rodriguez CJ, Furlan WD (2006) Fractal axicons. Opt Commun 263:1–5CrossRef
123.
go back to reference Verma R, Banerjee V, Senthilkumaran P (2012) Redundancy in Cantor diffractals. Opt Express 20(8):8250–8255CrossRef Verma R, Banerjee V, Senthilkumaran P (2012) Redundancy in Cantor diffractals. Opt Express 20(8):8250–8255CrossRef
124.
go back to reference Verma R, Sharma MK, Banerjee V, Senthilkumaran P (2013) Robustness of Cantor diffractals. Opt Express 21(7):7951–7956CrossRef Verma R, Sharma MK, Banerjee V, Senthilkumaran P (2013) Robustness of Cantor diffractals. Opt Express 21(7):7951–7956CrossRef
125.
go back to reference Gellermann W, Kohmoto M, Sutherland B, Taylor PC (1994) Localization of light waves in Fibonacci dielectric multilayers. Phys Rev Lett 72(5):633–636CrossRef Gellermann W, Kohmoto M, Sutherland B, Taylor PC (1994) Localization of light waves in Fibonacci dielectric multilayers. Phys Rev Lett 72(5):633–636CrossRef
126.
go back to reference Yang X, Liu Y, Fu X (1999) Transmission properties of light through the Fibonacci-class multilayers. Phys Rev B 59(7):4545–4548CrossRef Yang X, Liu Y, Fu X (1999) Transmission properties of light through the Fibonacci-class multilayers. Phys Rev B 59(7):4545–4548CrossRef
127.
go back to reference Grushina NV, Korolenko PV, Markova SN (2008) Special features of the diffraction of light on optical Fibonacci gratings. Moscow Univ Phys Bull 63(2):123–126CrossRef Grushina NV, Korolenko PV, Markova SN (2008) Special features of the diffraction of light on optical Fibonacci gratings. Moscow Univ Phys Bull 63(2):123–126CrossRef
128.
go back to reference Gao N, Zhang Y, Xie C (2011) Circular Fibonacci gratings. Appl Opt 50(31):G142–G148CrossRef Gao N, Zhang Y, Xie C (2011) Circular Fibonacci gratings. Appl Opt 50(31):G142–G148CrossRef
129.
go back to reference Verma R, Banerjee V, Senthilkumaran P (2014) Fractal signatures in the aperiodic Fibonacci grating. Opt Lett 39(9):2557–2560CrossRef Verma R, Banerjee V, Senthilkumaran P (2014) Fractal signatures in the aperiodic Fibonacci grating. Opt Lett 39(9):2557–2560CrossRef
130.
go back to reference Verma R, Sharma MK, Senthilkumaran P, Banerjee V (2014) Analysis of Fibonacci gratings and their diffraction patterns. J Opt Soc Am A 31(7):1473–1480CrossRef Verma R, Sharma MK, Senthilkumaran P, Banerjee V (2014) Analysis of Fibonacci gratings and their diffraction patterns. J Opt Soc Am A 31(7):1473–1480CrossRef
131.
go back to reference Ferrando V, Gimenez F, Furlan WD, Monsoriu JA (2015) Bifractal focussing and imaging properties of Thue-Morse zone plates. Opt Express 23(15):19846–19853CrossRef Ferrando V, Gimenez F, Furlan WD, Monsoriu JA (2015) Bifractal focussing and imaging properties of Thue-Morse zone plates. Opt Express 23(15):19846–19853CrossRef
132.
go back to reference Zhang J (2015) Three-dimensional array diffraction-limited foci from Greek ladders to generalized Fibonacci sequences. Opt Express 23(23):30308–30317CrossRef Zhang J (2015) Three-dimensional array diffraction-limited foci from Greek ladders to generalized Fibonacci sequences. Opt Express 23(23):30308–30317CrossRef
133.
go back to reference Zhang J, Ke J, Zhu J, Lin Z (2015) Three-dimensional array foci of generalized Fibonacci photon sieves. Cornell University. arXive:1510.03511[physics.optics] Zhang J, Ke J, Zhu J, Lin Z (2015) Three-dimensional array foci of generalized Fibonacci photon sieves. Cornell University. arXive:1510.03511[physics.optics]
134.
go back to reference Mukherjee P, Hazra LN (2014) Self-similarity in radial Walsh filters and axial intensity distribution in the farfield diffraction pattern. J Opt Soc Am A 31(2):379–387CrossRef Mukherjee P, Hazra LN (2014) Self-similarity in radial Walsh filters and axial intensity distribution in the farfield diffraction pattern. J Opt Soc Am A 31(2):379–387CrossRef
135.
go back to reference Mukherjee P, Hazra LN (2014) Self-similarity in the farfield diffraction patterns of annular Walsh filters. Asian J Phys 23(4):543–560 Mukherjee P, Hazra LN (2014) Self-similarity in the farfield diffraction patterns of annular Walsh filters. Asian J Phys 23(4):543–560
136.
go back to reference Mukherjee P, Hazra LN (2014) Self-similarity in transverse intensity distributions in the farfield diffraction pattern of radial Walsh filters. Adv Opt 2014(352316):7 Mukherjee P, Hazra LN (2014) Self-similarity in transverse intensity distributions in the farfield diffraction pattern of radial Walsh filters. Adv Opt 2014(352316):7
137.
go back to reference Born M, Wolf E (1980) Principles of optics. Pergamon, Oxford Born M, Wolf E (1980) Principles of optics. Pergamon, Oxford
138.
go back to reference Goodman JW (1996) Introduction to fourier optics, 2nd edn. McGraw-Hill, Singapore Goodman JW (1996) Introduction to fourier optics, 2nd edn. McGraw-Hill, Singapore
139.
go back to reference Hopkins HH (1983) Canonical and real space coordinates used in the theory of image formation. In: Shannon RR, Wyant JC (eds) Applied optics and optical engineering. Academic, New York, 9, 307 Hopkins HH (1983) Canonical and real space coordinates used in the theory of image formation. In: Shannon RR, Wyant JC (eds) Applied optics and optical engineering. Academic, New York, 9, 307
140.
go back to reference Gu M (2000) Advanced optical imaging theory. Springer, Berlin, pp 46–47 Gu M (2000) Advanced optical imaging theory. Springer, Berlin, pp 46–47
141.
go back to reference Hopkins HH (1981) Calculation of the aberrations and image assessment for a general optical system. Opt Acta 28(5):667–714CrossRef Hopkins HH (1981) Calculation of the aberrations and image assessment for a general optical system. Opt Acta 28(5):667–714CrossRef
Metadata
Title
Computation of Farfield Diffraction Characteristics of Radial and Annular Walsh Filters on the Pupil of Axisymmetric Imaging Systems
Authors
Lakshminarayan Hazra
Pubali Mukherjee
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2809-0_3