Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

Computation of Gate-Induced-Drain-Leakage Current Due to Band-to-Band Tunneling for Ultrathin MOSFET

Authors : Krishnendu Roy, Anal Roy Chowdhury, Arpan Deyasi

Published in: Information, Photonics and Communication

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, gate-induced-drain-leakage current due to band-to-band tunneling is analytically computed in nanometric MOSFET under high electric field. Fowler-Nordheim tunneling current is first calculated for different dielectric thicknesses with some alteration of Hu’s model, and dominance of thermionic current is established. Under this criterion, B–B tunneling current is evaluated as leakage arises due to the overlap of gate over source and drain regions, and dielectric properties along with doping concentration and temperature are taken into account following Kane’s tunneling probability. Role of high-K dielectric material is also analyzed for nanoscale application. Result shows that higher overlapping of gate length due to lateral diffusion of source and drain regions tailors the leakage current. Findings are extremely important for use of the device as SRAM.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Gupta, K.A., Anvekar, D.K., Venkateswarlu, V.: Comparative study and analysis of short channel effects for 180 nm and 45 nm transistors. In: Advances in Computing and Information Technology: Advances in Intelligent Systems and Computing, vol. 178, chap. 69, pp. 707–715 (2013) Gupta, K.A., Anvekar, D.K., Venkateswarlu, V.: Comparative study and analysis of short channel effects for 180 nm and 45 nm transistors. In: Advances in Computing and Information Technology: Advances in Intelligent Systems and Computing, vol. 178, chap. 69, pp. 707–715 (2013)
3.
go back to reference Chaudhry, A., Kumar, M.J.: Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Trans. Device Mater. Rel. 4(1), 99–109 (2004)CrossRef Chaudhry, A., Kumar, M.J.: Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Trans. Device Mater. Rel. 4(1), 99–109 (2004)CrossRef
4.
go back to reference Cheng, H.W., Li, Y.: 16-nm multigate and multifin MOSFET device and SRAM circuits. In: International Symposium on Next-Generation Electronics (2010) Cheng, H.W., Li, Y.: 16-nm multigate and multifin MOSFET device and SRAM circuits. In: International Symposium on Next-Generation Electronics (2010)
5.
go back to reference Subramanian, V.: Multiple gate field-effect transistors for future CMOS technologies. IETE Tech. Rev. 27(6), 446–454 (2010)CrossRef Subramanian, V.: Multiple gate field-effect transistors for future CMOS technologies. IETE Tech. Rev. 27(6), 446–454 (2010)CrossRef
6.
go back to reference Mudanai, S., Fan, Y.Y., Ouyang, Q., Tasch, A.F., Banerjee, S.K.: Modeling of direct tunneling current through gate dielectric stacks. IEEE Trans. Electron Devices 47(10), 1851–1857 (2000)CrossRef Mudanai, S., Fan, Y.Y., Ouyang, Q., Tasch, A.F., Banerjee, S.K.: Modeling of direct tunneling current through gate dielectric stacks. IEEE Trans. Electron Devices 47(10), 1851–1857 (2000)CrossRef
7.
go back to reference Tiefeng, W., Zhichao, Z., Quan, W., Lizhi, G., Jing, L.: An algorithm on direct tunneling current model based on DIBL effect. In: International Conference on Chemical, Material and Food Engineering, Atlantis Press, pp. 719–722 (2015) Tiefeng, W., Zhichao, Z., Quan, W., Lizhi, G., Jing, L.: An algorithm on direct tunneling current model based on DIBL effect. In: International Conference on Chemical, Material and Food Engineering, Atlantis Press, pp. 719–722 (2015)
8.
go back to reference Amin, S.I., Sarin, R.K.: Direct tunneling gate current model for symmetric double gate junctionless transistor with SiO2/High-K gate stacked dielectric. J. Semicond. 37(3), 034001 (2016)CrossRef Amin, S.I., Sarin, R.K.: Direct tunneling gate current model for symmetric double gate junctionless transistor with SiO2/High-K gate stacked dielectric. J. Semicond. 37(3), 034001 (2016)CrossRef
9.
go back to reference Oh, S.J., Yeow, Y.T.: A modification to the fowler-nordheim tunneling current calculation for thin MOS structures. Solid State Electron. 31(6), 1113–1118 (1988)CrossRef Oh, S.J., Yeow, Y.T.: A modification to the fowler-nordheim tunneling current calculation for thin MOS structures. Solid State Electron. 31(6), 1113–1118 (1988)CrossRef
10.
go back to reference Mondal, I., Dutta, A.K.: An analytical gate tunnelling current model for MOSFETs having ultrathin gate oxides. IEEE Trans. Electron Devices 55(7), 1682–1692 (2008)CrossRef Mondal, I., Dutta, A.K.: An analytical gate tunnelling current model for MOSFETs having ultrathin gate oxides. IEEE Trans. Electron Devices 55(7), 1682–1692 (2008)CrossRef
11.
go back to reference Hong, S.H., Jang, J.H., Park, T.J., Jeong, D.S., Kim, M., Hwang, C.S.: Improvement of the current-voltage characteristics of a tunneling dielectric by adopting a Si3N4∕SiO2∕Si3N4 multilayer for flash memory application. Appl. Phys. Lett. 87, 152106 (2005)CrossRef Hong, S.H., Jang, J.H., Park, T.J., Jeong, D.S., Kim, M., Hwang, C.S.: Improvement of the current-voltage characteristics of a tunneling dielectric by adopting a Si3N4∕SiO2∕Si3N4 multilayer for flash memory application. Appl. Phys. Lett. 87, 152106 (2005)CrossRef
12.
go back to reference Cassan, E., Dollfus, P., Galdin, S., Hesto, P.: Calculation of direct tunneling gate current through ultra-thin oxide and oxide/nitride stacks in MOSFETs and H-MOSFETs. Microelectron. Reliab. 40(4–5), 585–588 (2000)CrossRef Cassan, E., Dollfus, P., Galdin, S., Hesto, P.: Calculation of direct tunneling gate current through ultra-thin oxide and oxide/nitride stacks in MOSFETs and H-MOSFETs. Microelectron. Reliab. 40(4–5), 585–588 (2000)CrossRef
13.
go back to reference Lai, P.T., Jingping, X., Liu, B.Y., Xu, Z.: New observation and improvement in GIDL of N-MOSFET’s with various kinds of gate oxides under hot-carrier stress. In: IEEE International Conference on Semiconductor Electronics (1996) Lai, P.T., Jingping, X., Liu, B.Y., Xu, Z.: New observation and improvement in GIDL of N-MOSFET’s with various kinds of gate oxides under hot-carrier stress. In: IEEE International Conference on Semiconductor Electronics (1996)
14.
go back to reference Chang, L., Yang, K.J., Yeo, Y.C., Polishchuk, I., King, T.J., Hu, C.: Direct-tunneling gate leakage current in double-gate and ultrathin body MOSFETs. IEEE Trans. Electron Devices 49(12), 2288–2295 (2002)CrossRef Chang, L., Yang, K.J., Yeo, Y.C., Polishchuk, I., King, T.J., Hu, C.: Direct-tunneling gate leakage current in double-gate and ultrathin body MOSFETs. IEEE Trans. Electron Devices 49(12), 2288–2295 (2002)CrossRef
15.
go back to reference Lee, W.C., Hu, C.: Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling. IEEE Trans. Electron Devices 48(7), 1366–1373 (2001)CrossRef Lee, W.C., Hu, C.: Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling. IEEE Trans. Electron Devices 48(7), 1366–1373 (2001)CrossRef
16.
go back to reference Cai, J., Sah, C.T.: Gate tunneling currents in ultrathin oxide metal-oxide-silicon transistors. J. Appl. Phys. 89(4), 2272–2285 (2001)CrossRef Cai, J., Sah, C.T.: Gate tunneling currents in ultrathin oxide metal-oxide-silicon transistors. J. Appl. Phys. 89(4), 2272–2285 (2001)CrossRef
17.
go back to reference Nathan, V., Das, N.C.: Gate-induced drain leakage current in MOS devices. IEEE Trans. Electron Devices 40(10), 1888–1890 (1993)CrossRef Nathan, V., Das, N.C.: Gate-induced drain leakage current in MOS devices. IEEE Trans. Electron Devices 40(10), 1888–1890 (1993)CrossRef
18.
go back to reference Chen, J., Chan, T.Y., Chen, I.C., Ko, P.K., Hu, C.: Subbreakdown drain leakage current in MOSFET. IEEE Electron Device Lett. 8(11), 515–517 (1987)CrossRef Chen, J., Chan, T.Y., Chen, I.C., Ko, P.K., Hu, C.: Subbreakdown drain leakage current in MOSFET. IEEE Electron Device Lett. 8(11), 515–517 (1987)CrossRef
19.
go back to reference Semenov, O., Pradzynski, A., Sachdev, M.: Impact of gate induced drain leakage on overall leakage of submicrometer CMOS VLSI circuits. IEEE Trans. Semicond. Manuf. 15(1), 9–18 (2002)CrossRef Semenov, O., Pradzynski, A., Sachdev, M.: Impact of gate induced drain leakage on overall leakage of submicrometer CMOS VLSI circuits. IEEE Trans. Semicond. Manuf. 15(1), 9–18 (2002)CrossRef
20.
go back to reference Choi, Y.K., Ha, D., King, T.J., Bokor, J.: Investigation of gate-induced drain leakage (GIDL) current in thin body devices: single-gate ultra-thin body, symmetrical double-gate, and asymmetrical double-gate MOSFETs. Jpn. J. Appl. Phys. 42, 2073–2076 (2003)CrossRef Choi, Y.K., Ha, D., King, T.J., Bokor, J.: Investigation of gate-induced drain leakage (GIDL) current in thin body devices: single-gate ultra-thin body, symmetrical double-gate, and asymmetrical double-gate MOSFETs. Jpn. J. Appl. Phys. 42, 2073–2076 (2003)CrossRef
21.
go back to reference Dai, C.H., Chang, T.C., Chu, A.K., Kuo, Y.J., Ho, S.H., Hsieh, T.Y., Lo, W.H., Chen, C.E., Shih, J.M., Chung, W.L., Dai, B.S., Chen, H.M., Xia, G., Cheng, O., Huang, C.T.: Hot carrier effect on gate-induced drain leakage current in high-K/metal gate n-channel metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 99, 012106 (2011)CrossRef Dai, C.H., Chang, T.C., Chu, A.K., Kuo, Y.J., Ho, S.H., Hsieh, T.Y., Lo, W.H., Chen, C.E., Shih, J.M., Chung, W.L., Dai, B.S., Chen, H.M., Xia, G., Cheng, O., Huang, C.T.: Hot carrier effect on gate-induced drain leakage current in high-K/metal gate n-channel metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 99, 012106 (2011)CrossRef
Metadata
Title
Computation of Gate-Induced-Drain-Leakage Current Due to Band-to-Band Tunneling for Ultrathin MOSFET
Authors
Krishnendu Roy
Anal Roy Chowdhury
Arpan Deyasi
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9453-0_1