Skip to main content
Top
Published in: Fluid Dynamics 2/2022

01-12-2022

Computational Interpretation of Classical Rose–Stark Experimental Data

Author: S. T. Surzhikov

Published in: Fluid Dynamics | Special Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Using a computer model of aerophysics of high-speed gas flows and the author’s computer code, a computational interpretation of the well-known experimental data of Rose and Stark on the flow around a cylindrical model with end blunt radii of 1.27, 2.54, and 5.04 cm in shock-wave experiments in the velocity range of 2–5.6 km/s is presented under conditions in the oncoming airflow corresponding to altitudes of 22 and 37 km. A comparison with experimental data on the densities of convective heat fluxes near the critical streamline is presented. A systematic numerical study of gasdynamic functions is carried out with allowance for the physicochemical nonequilibrium of the flow in the compressed layer between the detached shock wave and the streamlined surface.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chernyi, G.G., Gazovaya dinamika (Gas Dynamics), Moscow: Nauka, 1988. Chernyi, G.G., Gazovaya dinamika (Gas Dynamics), Moscow: Nauka, 1988.
4.
go back to reference Losev, S.A. and Generalov, N.A., On the vibration excitation and breakdown of oxygen molecules at high temperatures, Dokl. Akad. Nauk SSSR, 1961, vol. 141, no. 5, pp. 1072–1075. Losev, S.A. and Generalov, N.A., On the vibration excitation and breakdown of oxygen molecules at high temperatures, Dokl. Akad. Nauk SSSR, 1961, vol. 141, no. 5, pp. 1072–1075.
7.
go back to reference Stupochenko, E.V., Losev, S.A., and Osipov, A.I., Relaksatsionnye protsessy v udarnykh volnakh (Relaxation Processes in Shock Waves), Moscow: Nauka, 1965. Stupochenko, E.V., Losev, S.A., and Osipov, A.I., Relaksatsionnye protsessy v udarnykh volnakh (Relaxation Processes in Shock Waves), Moscow: Nauka, 1965.
8.
go back to reference Kuksenko, B.V. and Losev, S.A., Excitation of vibrations and the disintegration of biatomic molecules when they collide with atoms in a high-temperature gas, Dokl. Akad. Nauk SSSR, 1969, vol. 185, no. 1, pp. 69–72. Kuksenko, B.V. and Losev, S.A., Excitation of vibrations and the disintegration of biatomic molecules when they collide with atoms in a high-temperature gas, Dokl. Akad. Nauk SSSR, 1969, vol. 185, no. 1, pp. 69–72.
10.
go back to reference Kuznetsov, N.M., Kinetika monomolekulyarnykh reakcii (Kinetics of Monomolecular Reactioins), Moscow: Nauka, 1982. Kuznetsov, N.M., Kinetika monomolekulyarnykh reakcii (Kinetics of Monomolecular Reactioins), Moscow: Nauka, 1982.
11.
go back to reference Surzhikov, S.T., Radiatsionnaya gazovaya dimanika spuskaemykh kosmicheskikh apparatov. Mnogotemperaturnye modeli (Radiative Gas Dynamics of Space Capsules: Multitemperature Models), Moscow: Inst. Probl. Mekhaniki Ross. Akad. Nauk, 2013. Surzhikov, S.T., Radiatsionnaya gazovaya dimanika spuskaemykh kosmicheskikh apparatov. Mnogotemperaturnye modeli (Radiative Gas Dynamics of Space Capsules: Multitemperature Models), Moscow: Inst. Probl. Mekhaniki Ross. Akad. Nauk, 2013.
14.
go back to reference Landau, L. and Teller, E., Zur Theorie der Schalldispersion, Phys. Z. Sowjetunion, 1936, vol. 10, no. 1, pp. 34–43.MATH Landau, L. and Teller, E., Zur Theorie der Schalldispersion, Phys. Z. Sowjetunion, 1936, vol. 10, no. 1, pp. 34–43.MATH
16.
go back to reference Park, C., Nonequilibrium Hypersonic Aerothermodynamics, New-York: Wiley, 1990. Park, C., Nonequilibrium Hypersonic Aerothermodynamics, New-York: Wiley, 1990.
19.
go back to reference Smekhov, G.D. and Zhluktov, S.V., The dissociation-rate constant for diatomic molecules in the adiabatic model, Khim. Fiz., 1992, vol. 11, no. 9, pp. 1171–1179. Smekhov, G.D. and Zhluktov, S.V., The dissociation-rate constant for diatomic molecules in the adiabatic model, Khim. Fiz., 1992, vol. 11, no. 9, pp. 1171–1179.
20.
go back to reference Smekhov, G.D. and Zhluktov, S.V., Dissociation of diatomic molecules at extremely high temperatures, Khim. Fiz., 1993, vol. 12, no. 3, pp. 337–339. Smekhov, G.D. and Zhluktov, S.V., Dissociation of diatomic molecules at extremely high temperatures, Khim. Fiz., 1993, vol. 12, no. 3, pp. 337–339.
23.
go back to reference Egorov, I.V. and Nikol’skii, V.S., Role of oscillatory-dissociative interaction at hypersonic flow, Izv. Ross. Akad. Nauk. Mekh. Zhidkosti Gaza, 1997, no. 3, pp. 150–162. Egorov, I.V. and Nikol’skii, V.S., Role of oscillatory-dissociative interaction at hypersonic flow, Izv. Ross. Akad. Nauk. Mekh. Zhidkosti Gaza, 1997, no. 3, pp. 150–162.
24.
go back to reference Biryukov, A.S., Kinetics of physical processes in gasodynamic lasers, Tr. Fiz. Inst. Akad. Nauk SSSR, 1975, vol. 83, pp. 13–86. Biryukov, A.S., Kinetics of physical processes in gasodynamic lasers, Tr. Fiz. Inst. Akad. Nauk SSSR, 1975, vol. 83, pp. 13–86.
28.
go back to reference Bertin, J., Hypersonic Aerothermodynamics, AIAA Education Series, New York: AIAA, 1993. Bertin, J., Hypersonic Aerothermodynamics, AIAA Education Series, New York: AIAA, 1993.
29.
go back to reference Nauchnye tekhnologii XXI veka (Scientific Technologies of the 21st Century), Leont’ev, A.I., Pilyugin, N.N., Polezhaev, Yu.V., and Polyaev, V.M., Eds., Moscow: Energomash, 2000. Nauchnye tekhnologii XXI veka (Scientific Technologies of the 21st Century), Leont’ev, A.I., Pilyugin, N.N., Polezhaev, Yu.V., and Polyaev, V.M., Eds., Moscow: Energomash, 2000.
31.
go back to reference Malkin, O.A., Relaksatsionnye protsessy v gaze (Relaxation Processes in Gas), Moscow: Atomizdat, 1971. Malkin, O.A., Relaksatsionnye protsessy v gaze (Relaxation Processes in Gas), Moscow: Atomizdat, 1971.
32.
go back to reference Umanskii, S.Ya., Teoriya elementarnykh khimicheskikh reaktsii (Theory of Elementary Chemical Reactions), Dolgoprudny: Intellekt, 2009. Umanskii, S.Ya., Teoriya elementarnykh khimicheskikh reaktsii (Theory of Elementary Chemical Reactions), Dolgoprudny: Intellekt, 2009.
34.
go back to reference Hirschfelder, J.O., Curtiss, Ch.F., and Bird, R.B., Molecular Theory of Gases and Liquids, New York: Wiley, 1964.MATH Hirschfelder, J.O., Curtiss, Ch.F., and Bird, R.B., Molecular Theory of Gases and Liquids, New York: Wiley, 1964.MATH
35.
go back to reference Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, New York: Wiley, 1960. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, New York: Wiley, 1960.
36.
go back to reference Ginzburg, I.P., Friction and Heat Transfer at Motion of Gas Mixture, Leningrad: Leningrad. Gos. Univ., 1975. Ginzburg, I.P., Friction and Heat Transfer at Motion of Gas Mixture, Leningrad: Leningrad. Gos. Univ., 1975.
37.
go back to reference Wilke, C.R., Diffusional properties of multicomponent gases, Chem. Engn. Progr., 1950, vol. 46, no. 2, pp. 95–104. Wilke, C.R., Diffusional properties of multicomponent gases, Chem. Engn. Progr., 1950, vol. 46, no. 2, pp. 95–104.
38.
go back to reference Anfimov, N.A., Laminar boundary layer in multicomponent gas mixture, Izv. Akad. Nauk SSSR. Mekh. Mashinostr., 1962, no. 1, pp. 25–31. Anfimov, N.A., Laminar boundary layer in multicomponent gas mixture, Izv. Akad. Nauk SSSR. Mekh. Mashinostr., 1962, no. 1, pp. 25–31.
39.
go back to reference Svehla, R.A., Estimated viscosities and thermal conductivities of gases at high temperatures, NASA TR-R-132, 1962. Svehla, R.A., Estimated viscosities and thermal conductivities of gases at high temperatures, NASA TR-R-132, 1962.
43.
go back to reference Thermodynamic Properties of Individual Substances, vol. 1: Elements O, H(D, T), F, Cl, Br, I, He, Ne, Ar, Kr, Xe, Rn, S, N, P, and Their Compounds, part 1: Methods and Computation, Gurvich, L.V., Veyts, I.V., Alcock, C.B., and Iorish, V.S., Eds., Hemisphere Publishing Corporation, 1989, 4th ed. Thermodynamic Properties of Individual Substances, vol. 1: Elements O, H(D, T), F, Cl, Br, I, He, Ne, Ar, Kr, Xe, Rn, S, N, P, and Their Compounds, part 1: Methods and Computation, Gurvich, L.V., Veyts, I.V., Alcock, C.B., and Iorish, V.S., Eds., Hemisphere Publishing Corporation, 1989, 4th ed.
44.
go back to reference Chase, M.W., Davies, C.A., Downey, J.R., Jr., Frurip, D.J., McDonald, R.A., and Syvertud, A.N., JANAF thermochemical tables. Third edition. I: Al–Co, J. Phys. Chem. Ref. Data, 1985, vol. 14, no. 1. Chase, M.W., Davies, C.A., Downey, J.R., Jr., Frurip, D.J., McDonald, R.A., and Syvertud, A.N., JANAF thermochemical tables. Third edition. I: Al–Co, J. Phys. Chem. Ref. Data, 1985, vol. 14, no. 1.
45.
go back to reference Chase, M.W., Davies, C.A., Downey, J.R., Jr., Frurip, D.J., McDonald, R.A., and Syvertud, A.N., JANAF thermochemical tables: Third edition. II: Cr–Zr, J. Phys. Chem. Ref. Data, 1985, vol. 14, pp. 927–1856. Chase, M.W., Davies, C.A., Downey, J.R., Jr., Frurip, D.J., McDonald, R.A., and Syvertud, A.N., JANAF thermochemical tables: Third edition. II: Cr–Zr, J. Phys. Chem. Ref. Data, 1985, vol. 14, pp. 927–1856.
48.
go back to reference Tannehill, J.C., Anderson, D.A., and Pletcher, R.H., Computational Fluid Mechanics and Heat Transfer, Taylor, 1997.MATH Tannehill, J.C., Anderson, D.A., and Pletcher, R.H., Computational Fluid Mechanics and Heat Transfer, Taylor, 1997.MATH
49.
go back to reference Surzhikov, S.T., Analytical methods of constructing finite-differences grids for computing aerothermodynamics of space capsules, Vestn. Mosk. Gos. Tekh. Univ. N.E. Baumana, 2004, no. 2, pp. 24–50. Surzhikov, S.T., Analytical methods of constructing finite-differences grids for computing aerothermodynamics of space capsules, Vestn. Mosk. Gos. Tekh. Univ. N.E. Baumana, 2004, no. 2, pp. 24–50.
51.
go back to reference Samarskii, A.A., Vvedenie v chislennye metody (Introduction to Numerical Methods), Moscow: Nauka, 1987. Samarskii, A.A., Vvedenie v chislennye metody (Introduction to Numerical Methods), Moscow: Nauka, 1987.
52.
go back to reference Zel’dovich, Ya.B. and Raizer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena), Moscow: Nauka, 1966. Zel’dovich, Ya.B. and Raizer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena), Moscow: Nauka, 1966.
Metadata
Title
Computational Interpretation of Classical Rose–Stark Experimental Data
Author
S. T. Surzhikov
Publication date
01-12-2022
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue Special Issue 2/2022
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462822100603

Other articles of this Special Issue 2/2022

Fluid Dynamics 2/2022 Go to the issue

Premium Partners