Skip to main content
Top
Published in: Journal of Cryptology 2/2014

01-04-2014

Computationally Secure Pattern Matching in the Presence of Malicious Adversaries

Authors: Carmit Hazay, Tomas Toft

Published in: Journal of Cryptology | Issue 2/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a protocol for the problem of secure two-party pattern matching, where Alice holds a text t∈{0,1} of length n, while Bob has a pattern p∈{0,1} of length m. The goal is for Bob to (only) learn where his pattern occurs in Alice’s text, while Alice learns nothing. Private pattern matching is an important problem that has many applications in the area of DNA search, computational biology and more. Our construction guarantees full simulation in the presence of malicious, polynomial-time adversaries (assuming the hardness of DDH assumption) and exhibits computation and communication costs of O(n+m) group elements in a constant round complexity. This improves over previous work by Gennaro et al. (Public Key Cryptography, pp. 145–160, 2010) whose solution requires overhead of O(nm) group elements and exponentiations in O(m) rounds. In addition to the above, we propose a collection of protocols for important variations of the secure pattern matching problem that are significantly more efficient than the current state of art solutions: First, we deal with secure pattern matching with wildcards. In this variant the pattern may contain wildcards that match both 0 and 1. Our protocol requires O(n+m) communication and O(1) rounds using O(nm) computation. Then we treat secure approximate pattern matching. In this variant the matches may be approximated, i.e., have Hamming distance less than some threshold, τ. Our protocol requires O() communication in O(1) rounds using O(nm) computation. Third, we have secure pattern matching with hidden pattern length. Here, the length, m, of Bob’s pattern remains a secret. Our protocol requires O(n+M) communication in O(1) rounds using O(n+M) computation, where M is an upper bound on m. Finally, we have secure pattern matching with hidden text length. Finally, in this variant the length, n, of Alice’s text remains a secret. Our protocol requires O(N+m) communication in O(1) rounds using O(N+m) computation, where N is an upper bound on n.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
This construction increases the round-complexity to \(O(\operatorname{loglog}\tau)\); for constant round complexity \(O(n\cdot\sqrt{\log{\tau}} ( \operatorname{loglog}{\tau} + k))\) elements will be exchanged.
 
2
π ⋆-proof specified in Appendix A deals with binary representation. Modifying it into ternary representation is straightforward.
 
Literature
[1]
go back to reference M. Abe, R. Cramer, S. Fehr, Non-interactive distributed-verifier proofs and proving relations among commitments, in ASIACRYPT (2002), pp. 206–223 M. Abe, R. Cramer, S. Fehr, Non-interactive distributed-verifier proofs and proving relations among commitments, in ASIACRYPT (2002), pp. 206–223
[2]
go back to reference C. Allauzen, M. Crochemore, M. Raffinot, Factor oracle: A new structure for pattern matching. In SOFSEM’99: Proceedings of the 26th Conference on Current Trends in Theory and Practice of Informatics on Theory and Practice of Informatics (Springer, London, 1999), pp. 295–310 C. Allauzen, M. Crochemore, M. Raffinot, Factor oracle: A new structure for pattern matching. In SOFSEM’99: Proceedings of the 26th Conference on Current Trends in Theory and Practice of Informatics on Theory and Practice of Informatics (Springer, London, 1999), pp. 295–310
[3]
go back to reference A. Amir, M. Lewenstein, E. Porat, Faster algorithms for string matching with mismatches. In SODA, San Francisco, California (2000), pp. 794–803 A. Amir, M. Lewenstein, E. Porat, Faster algorithms for string matching with mismatches. In SODA, San Francisco, California (2000), pp. 794–803
[4]
go back to reference G. Aggarwal, N. Mishra, B. Pinkas, Secure computation of the k’th-ranked element, in EUROCRYPT (2004), pp. 40–55 G. Aggarwal, N. Mishra, B. Pinkas, Secure computation of the k’th-ranked element, in EUROCRYPT (2004), pp. 40–55
[5]
go back to reference P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, G. Tsudik, Countering GATTACA: efficient and secure testing of fully-sequenced human genomes, in ACM Conference on Computer and Communications Security (2011), pp. 691–702 P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, G. Tsudik, Countering GATTACA: efficient and secure testing of fully-sequenced human genomes, in ACM Conference on Computer and Communications Security (2011), pp. 691–702
[6]
go back to reference J. Baron, K. El Defrawy, K. Minkovich, R. Ostrovsky, E. Tressler, 5pm: Secure pattern matching, in SCN (2012), pp. 222–240 J. Baron, K. El Defrawy, K. Minkovich, R. Ostrovsky, E. Tressler, 5pm: Secure pattern matching, in SCN (2012), pp. 222–240
[7]
go back to reference D. Beaver, Foundations of secure interactive computing. In CRYPTO, Springer, London (1992), pp. 377–391 D. Beaver, Foundations of secure interactive computing. In CRYPTO, Springer, London (1992), pp. 377–391
[8]
go back to reference S. Bayer, J. Groth, Efficient zero-knowledge argument for correctness of a shuffle, in EUROCRYPT (2012), pp. 263–280 S. Bayer, J. Groth, Efficient zero-knowledge argument for correctness of a shuffle, in EUROCRYPT (2012), pp. 263–280
[9]
go back to reference B.H. Bloom, Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970) CrossRefMATH B.H. Bloom, Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970) CrossRefMATH
[10]
go back to reference R.S. Boyer, J. Strother Moore, A fast string searching algorithm. Commun. ACM 20(10), 762–772 (1977) CrossRefMATH R.S. Boyer, J. Strother Moore, A fast string searching algorithm. Commun. ACM 20(10), 762–772 (1977) CrossRefMATH
[11]
go back to reference F. Brandt, Efficient cryptographic protocol design based on distributed el gamal encryption, in ICISC (2005), pp. 32–47 F. Brandt, Efficient cryptographic protocol design based on distributed el gamal encryption, in ICISC (2005), pp. 32–47
[13]
go back to reference R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, in FOCS (2001), pp. 136–145 R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, in FOCS (2001), pp. 136–145
[14]
go back to reference R. Cramer, R. Gennaro, B. Schoenmakers, A secure and optimally efficient multi-authority election scheme, in EUROCRYPT (1997), pp. 103–118 R. Cramer, R. Gennaro, B. Schoenmakers, A secure and optimally efficient multi-authority election scheme, in EUROCRYPT (1997), pp. 103–118
[15]
go back to reference D. Chaum, T.P. Pedersen, Wallet databases with observers. In CRYPTO’92: Proceedings of the 12th Annual International Cryptology Conference on Advances in Cryptology (Springer, London, 1993). pp. 89–105 D. Chaum, T.P. Pedersen, Wallet databases with observers. In CRYPTO’92: Proceedings of the 12th Annual International Cryptology Conference on Advances in Cryptology (Springer, London, 1993). pp. 89–105
[16]
go back to reference M. Chase, I. Visconti, Secure database commitments and universal arguments of quasi knowledge, in CRYPTO (2012), pp. 236–254 M. Chase, I. Visconti, Secure database commitments and universal arguments of quasi knowledge, in CRYPTO (2012), pp. 236–254
[17]
go back to reference T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985) CrossRefMATHMathSciNet T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985) CrossRefMATHMathSciNet
[18]
go back to reference M.J. Fischer, M.S. Paterson, String-matching and other products, in Complexity of Computation, SIAM-AMS, vol. 7 (1974), pp. 113–125 M.J. Fischer, M.S. Paterson, String-matching and other products, in Complexity of Computation, SIAM-AMS, vol. 7 (1974), pp. 113–125
[19]
go back to reference K.B. Frikken, Practical private DNA string searching and matching through efficient oblivious automata evaluation, in DBSec (2009), pp. 81–94 K.B. Frikken, Practical private DNA string searching and matching through efficient oblivious automata evaluation, in DBSec (2009), pp. 81–94
[20]
go back to reference R. Gennaro, C. Hazay, J.S. Sorensen, Automata evaluation and text search protocols with simulation based security, in Public Key Cryptography (2010), pp. 145–160 R. Gennaro, C. Hazay, J.S. Sorensen, Automata evaluation and text search protocols with simulation based security, in Public Key Cryptography (2010), pp. 145–160
[21]
go back to reference S. Goldwasser, L.A. Levin, Fair computation of general functions in presence of immoral majority, in CRYPTO (Springer, London, 1991), pp. 77–93 S. Goldwasser, L.A. Levin, Fair computation of general functions in presence of immoral majority, in CRYPTO (Springer, London, 1991), pp. 77–93
[22]
go back to reference O. Goldreich, S. Micali, A. Wigderson, How to play any mental game, in STOC’87: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing (ACM, New York, 1987), pp. 218–229 O. Goldreich, S. Micali, A. Wigderson, How to play any mental game, in STOC’87: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing (ACM, New York, 1987), pp. 218–229
[23]
go back to reference O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applications (Cambridge University Press, New York, 2004) CrossRef O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applications (Cambridge University Press, New York, 2004) CrossRef
[24]
go back to reference C. Hazay, Y. Lindell, Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries, in TCC (2008), pp. 155–175 C. Hazay, Y. Lindell, Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries, in TCC (2008), pp. 155–175
[25]
go back to reference C. Hazay, Y. Lindell, Efficient Secure Two-Party Protocols—Techniques and Constructions (Springer, Berlin, 2010) CrossRefMATH C. Hazay, Y. Lindell, Efficient Secure Two-Party Protocols—Techniques and Constructions (Springer, Berlin, 2010) CrossRefMATH
[26]
go back to reference C. Hazay, T. Toft, Computationally secure pattern matching in the presence of malicious adversaries, in ASIACRYPT (2010), pp. 195–212 C. Hazay, T. Toft, Computationally secure pattern matching in the presence of malicious adversaries, in ASIACRYPT (2010), pp. 195–212
[27]
go back to reference Y. Ishai, J. Kilian, K. Nissim, E. Petrank, Extending oblivious transfers efficiently, in CRYPTO (2003), pp. 145–161 Y. Ishai, J. Kilian, K. Nissim, E. Petrank, Extending oblivious transfers efficiently, in CRYPTO (2003), pp. 145–161
[28]
go back to reference C.S. Iliopoulos, M. Sohel Rahman, Pattern matching algorithms with don’t cares, in SOFSEM (2007), pp. 116–126 C.S. Iliopoulos, M. Sohel Rahman, Pattern matching algorithms with don’t cares, in SOFSEM (2007), pp. 116–126
[29]
go back to reference A. Jarrous, B. Pinkas, Secure hamming distance based computation and its applications, in ANCS, vol. 5536 (2009), pp. 107–124 A. Jarrous, B. Pinkas, Secure hamming distance based computation and its applications, in ANCS, vol. 5536 (2009), pp. 107–124
[30]
go back to reference J. Katz, L. Malka, Secure text processing with applications to private DNA matching, in ACM Conference on Computer and Communications Security (2010), pp. 485–492 J. Katz, L. Malka, Secure text processing with applications to private DNA matching, in ACM Conference on Computer and Communications Security (2010), pp. 485–492
[31]
[32]
go back to reference Y. Lindell, B. Pinkas, Secure two-party computation via cut-and-choose oblivious transfer, in TCC (2011), pp. 329–346 Y. Lindell, B. Pinkas, Secure two-party computation via cut-and-choose oblivious transfer, in TCC (2011), pp. 329–346
[33]
go back to reference P. Mohassel, S. Niksefat, S.S. Sadeghian, B. Sadeghiyan, An efficient protocol for oblivious DFA evaluation and applications, in CT-RSA (2012), pp. 398–415 P. Mohassel, S. Niksefat, S.S. Sadeghian, B. Sadeghiyan, An efficient protocol for oblivious DFA evaluation and applications, in CT-RSA (2012), pp. 398–415
[34]
go back to reference S. Micali, P. Rogaway, Secure computation (abstract), in CRYPTO (1991), pp. 392–404. This is preliminary version of unpublished 1992 manuscript S. Micali, P. Rogaway, Secure computation (abstract), in CRYPTO (1991), pp. 392–404. This is preliminary version of unpublished 1992 manuscript
[35]
go back to reference G. Navarro, V. Mäkinen, Compressed full-text indexes. ACM Comput. Surv. 39(1), 2 (2007) CrossRef G. Navarro, V. Mäkinen, Compressed full-text indexes. ACM Comput. Surv. 39(1), 2 (2007) CrossRef
[36]
go back to reference K.S. Namjoshi, G.J. Narlikar, Robust and fast pattern matching for intrusion detection, in INFOCOM (2010), pp. 740–748 K.S. Namjoshi, G.J. Narlikar, Robust and fast pattern matching for intrusion detection, in INFOCOM (2010), pp. 740–748
[37]
go back to reference T. Nishide, K. Ohta, Multiparty computation for interval, equality, and comparison without bit-decomposition protocol, in Public Key Cryptography (2007), pp. 343–360 T. Nishide, K. Ohta, Multiparty computation for interval, equality, and comparison without bit-decomposition protocol, in Public Key Cryptography (2007), pp. 343–360
[38]
go back to reference M. Osadchy, B. Pinkas, A. Jarrous, B. Moskovich, Scifi—a system for secure face identification, in IEEE Symposium on Security and Privacy (2010), pp. 239–254 M. Osadchy, B. Pinkas, A. Jarrous, B. Moskovich, Scifi—a system for secure face identification, in IEEE Symposium on Security and Privacy (2010), pp. 239–254
[39]
go back to reference P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in EUROCRYPT (1999), pp. 223–238 P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in EUROCRYPT (1999), pp. 223–238
[40]
go back to reference T.P. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing, in CRYPTO (1991), pp. 129–140 T.P. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing, in CRYPTO (1991), pp. 129–140
[41]
go back to reference C.P. Schnorr, Efficient identification and signatures for smart cards, in CRYPTO’89: Proceedings on Advances in Cryptology (Springer, New York, 1989), pp. 239–252 C.P. Schnorr, Efficient identification and signatures for smart cards, in CRYPTO’89: Proceedings on Advances in Cryptology (Springer, New York, 1989), pp. 239–252
[42]
go back to reference T. Toft, Sub-linear, secure comparison with two non-colluding parties, in Public Key Cryptography (2011), pp. 174–191 T. Toft, Sub-linear, secure comparison with two non-colluding parties, in Public Key Cryptography (2011), pp. 174–191
[43]
go back to reference J.R. Troncoso-Pastoriza, S. Katzenbeisser, M. Celik, Privacy preserving error resilient DNA searching through oblivious automata, in CCS’07: Proceedings of the 14th ACM Conference on Computer and Communications Security (ACM, New York, 2007), pp. 519–528 CrossRef J.R. Troncoso-Pastoriza, S. Katzenbeisser, M. Celik, Privacy preserving error resilient DNA searching through oblivious automata, in CCS’07: Proceedings of the 14th ACM Conference on Computer and Communications Security (ACM, New York, 2007), pp. 519–528 CrossRef
[44]
go back to reference B. Terelius, D. Wikström, Proofs of restricted shuffles, in AFRICACRYPT (2010), pp. 100–113 B. Terelius, D. Wikström, Proofs of restricted shuffles, in AFRICACRYPT (2010), pp. 100–113
[45]
go back to reference D. Vergnaud, Efficient and secure generalized pattern matching via fast Fourier transform, in AFRICACRYPT (2011), pp. 41–58 D. Vergnaud, Efficient and secure generalized pattern matching via fast Fourier transform, in AFRICACRYPT (2011), pp. 41–58
[46]
go back to reference A.C.-C. Yao, How to generate and exchange secrets, in SFCS’86: Proceedings of the 27th Annual Symposium on Foundations of Computer Science, (IEEE Computer Society, Washington, 1986), pp. 162–167 A.C.-C. Yao, How to generate and exchange secrets, in SFCS’86: Proceedings of the 27th Annual Symposium on Foundations of Computer Science, (IEEE Computer Society, Washington, 1986), pp. 162–167
Metadata
Title
Computationally Secure Pattern Matching in the Presence of Malicious Adversaries
Authors
Carmit Hazay
Tomas Toft
Publication date
01-04-2014
Publisher
Springer US
Published in
Journal of Cryptology / Issue 2/2014
Print ISSN: 0933-2790
Electronic ISSN: 1432-1378
DOI
https://doi.org/10.1007/s00145-013-9147-8

Other articles of this Issue 2/2014

Journal of Cryptology 2/2014 Go to the issue

Premium Partner