Skip to main content
Top

2024 | OriginalPaper | Chapter

Concentrated-Solar-Thermal-Driven Recycling of Li-Ion Battery Waste Through Carbothermic Reduction: Thermodynamic Assessment and Experimental Verification

Authors : Bintang A. Nuraeni, Deddy C. Nababan, A. D. P. Putera, M. Akbar Rhamdhani

Published in: Rare Metal Technology 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Following the global trend towards electric transportation, automakers are transitioning from internal combustion engines to electric vehicles. To overcome the expected increase in spent batteries, recycling li-ion batteries is vital in securing the raw materials. While the pyrometallurgical route offers an effective metallurgical separation, its drawback lies in the high energy consumption from the high-temperature requirement. A high-temperature process by a cleaner energy source like concentrated solar energy is an alternative to address this issue. Solar energy proves promising due to its renewable nature. In this study, the battery waste containing various cathode metals was extracted through carbothermic reduction using anode carbon in a solar simulator furnace. A thermodynamic assessment was conducted using the FactSage™ thermochemical package in conjunction with selected experimental data within the temperature range of 400–800 °C. The development of a concentrated-solar-thermal-driven recycling route is a necessary step towards a sustainable process for recycling spent li-ion batteries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jacobson MZ, Delucchi MA (2011) Providing all global energy with wind, water, and solar power, part i: technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 39(3):1154–1169CrossRef Jacobson MZ, Delucchi MA (2011) Providing all global energy with wind, water, and solar power, part i: technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 39(3):1154–1169CrossRef
2.
go back to reference Py X, Azoumah Y, Olives R (2013) Concentrated solar power: current technologies, major innovative issues and applicability to West African countries. Renew Sustain Energy Rev 18:306–315CrossRef Py X, Azoumah Y, Olives R (2013) Concentrated solar power: current technologies, major innovative issues and applicability to West African countries. Renew Sustain Energy Rev 18:306–315CrossRef
3.
go back to reference Nuraeni BA et al (2022) Carbothermic reduction of LiCoO2 cathode material: thermodynamic analysis, microstructure and mechanisms. Sustain Mater Technol 34:e00526 Nuraeni BA et al (2022) Carbothermic reduction of LiCoO2 cathode material: thermodynamic analysis, microstructure and mechanisms. Sustain Mater Technol 34:e00526
4.
go back to reference Nuraeni BA et al (2023) Hydrogen reduction of LiCoO2 cathode material: thermodynamic analysis, microstructure, and mechanisms. Metall Mater Trans B, 2023: p 1–26 Nuraeni BA et al (2023) Hydrogen reduction of LiCoO2 cathode material: thermodynamic analysis, microstructure, and mechanisms. Metall Mater Trans B, 2023: p 1–26
5.
go back to reference Nuraeni BA et al (2023) Recovery of cobalt and lithium by carbothermic reduction of LiCoO2 cathode material: a kinetic study. Metall and Mater Trans B 54(2):602–620CrossRef Nuraeni BA et al (2023) Recovery of cobalt and lithium by carbothermic reduction of LiCoO2 cathode material: a kinetic study. Metall and Mater Trans B 54(2):602–620CrossRef
6.
go back to reference Nuraeni BA et al (2023) Recovery of valuable metals from Li-ion battery waste through carbon and hydrogen reduction: thermodynamic analysis and experimental verification. In: TMS annual meeting & exhibition, 2023. Springer Nuraeni BA et al (2023) Recovery of valuable metals from Li-ion battery waste through carbon and hydrogen reduction: thermodynamic analysis and experimental verification. In: TMS annual meeting & exhibition, 2023. Springer
7.
go back to reference Nababan D et al (2023) Separation of Li and Co from LiCoO2 cathode material through aluminothermic reduction using different aluminum sources: chemical grade, swarf, and dross. In: TMS annual meeting & exhibition, 2023. Springer Nababan D et al (2023) Separation of Li and Co from LiCoO2 cathode material through aluminothermic reduction using different aluminum sources: chemical grade, swarf, and dross. In: TMS annual meeting & exhibition, 2023. Springer
8.
go back to reference Nuraeni B et al (2023) Recovery of valuable metals from Li-ion battery waste through carbon and hydrogen reduction: thermodynamic analysis and experimental verification, 2023, pp 437–448 Nuraeni B et al (2023) Recovery of valuable metals from Li-ion battery waste through carbon and hydrogen reduction: thermodynamic analysis and experimental verification, 2023, pp 437–448
9.
go back to reference Chase MW (1986) JANAF thermochemical tables, 3rd edn. American Chemical Society, Washington Chase MW (1986) JANAF thermochemical tables, 3rd edn. American Chemical Society, Washington
10.
11.
go back to reference Jung I-H et al (2004) Thermodynamic evaluation and modeling of the Fe–Co–O system. Acta Mater 52:507–519CrossRef Jung I-H et al (2004) Thermodynamic evaluation and modeling of the Fe–Co–O system. Acta Mater 52:507–519CrossRef
12.
go back to reference Chernova NA et al (2007) Layered LixNiyMnyCo1-2yO2 cathodes for lithium ion batteries: understanding local structure via magnetic properties. Chem Mater 19(19):4682–4693CrossRef Chernova NA et al (2007) Layered LixNiyMnyCo1-2yO2 cathodes for lithium ion batteries: understanding local structure via magnetic properties. Chem Mater 19(19):4682–4693CrossRef
13.
go back to reference Cupid D et al (2017) Interlaboratory study of the heat capacity of LiNi1/3Mn1/3Co1/3O2 (NMC111) with layered structure. Int J Mater Res Cupid D et al (2017) Interlaboratory study of the heat capacity of LiNi1/3Mn1/3Co1/3O2 (NMC111) with layered structure. Int J Mater Res
14.
go back to reference Cupid DM et al (2016) Enthalpy of formation and heat capacity of Li2MnO3. J Ceram Soc Jpn 124(10):1072–1082CrossRef Cupid DM et al (2016) Enthalpy of formation and heat capacity of Li2MnO3. J Ceram Soc Jpn 124(10):1072–1082CrossRef
15.
go back to reference Gotcu P, Seifert HJ (2016) Thermophysical properties of LiCoO2–LiMn2O4 blended electrode materials for Li-ion batteries. Phys Chem Chem Phys 18(15):10550–10562CrossRefPubMed Gotcu P, Seifert HJ (2016) Thermophysical properties of LiCoO2–LiMn2O4 blended electrode materials for Li-ion batteries. Phys Chem Chem Phys 18(15):10550–10562CrossRefPubMed
16.
go back to reference Idemoto Y, Matsui T (2008) Thermodynamic stability, crystal structure, and cathodic performance of Li x (Mn 1/3Co 1/3Ni 1/3)O 2 depend on the synthetic process and Li content. Solid State Ionics 179:625–635CrossRef Idemoto Y, Matsui T (2008) Thermodynamic stability, crystal structure, and cathodic performance of Li x (Mn 1/3Co 1/3Ni 1/3)O 2 depend on the synthetic process and Li content. Solid State Ionics 179:625–635CrossRef
17.
go back to reference Jankovský O et al (2016) Thermodynamic properties of stoichiometric lithium cobaltite LiCoO2. Thermochim Acta 634:26–30CrossRef Jankovský O et al (2016) Thermodynamic properties of stoichiometric lithium cobaltite LiCoO2. Thermochim Acta 634:26–30CrossRef
18.
go back to reference Kawaji H et al (2002) Low-temperature heat capacity of layer structure lithium nickel oxide. Solid State Ionics 152–153:195–198CrossRef Kawaji H et al (2002) Low-temperature heat capacity of layer structure lithium nickel oxide. Solid State Ionics 152–153:195–198CrossRef
19.
go back to reference Knyazev AV et al (2014) Study of the phase transition and thermodynamic functions of LiMn2O4. Thermochim Acta 593:58–64CrossRef Knyazev AV et al (2014) Study of the phase transition and thermodynamic functions of LiMn2O4. Thermochim Acta 593:58–64CrossRef
20.
go back to reference Lee WK, Choy CL (1975) Heat capacity of fluoropolymers. J Polym Sci Polym Phys Ed 13(3):619–635CrossRef Lee WK, Choy CL (1975) Heat capacity of fluoropolymers. J Polym Sci Polym Phys Ed 13(3):619–635CrossRef
21.
go back to reference Masoumi M (2019) Thermochemical and electrochemical investigations of Li(Ni, Mn, Co)O2 (NMC) as positive electrode material for lithium-ion batteries Masoumi M (2019) Thermochemical and electrochemical investigations of Li(Ni, Mn, Co)O2 (NMC) as positive electrode material for lithium-ion batteries
22.
go back to reference Masoumi M et al (2017) Enthalpies of formation of layered LiNixMnxCo1–2xO2 (0 ≤ x ≤ 0.5) compounds as lithium ion battery cathode materials. Int J Mater Res 108(11):869–878 Masoumi M et al (2017) Enthalpies of formation of layered LiNixMnxCo1–2xO2 (0 ≤ x ≤ 0.5) compounds as lithium ion battery cathode materials. Int J Mater Res 108(11):869–878
23.
go back to reference Wang S et al (2018) First-principles Study on LiFePO4 Materials for lithium-ion battery. In: International workshop on materials, chemistry and engineering—IWMCE, 2018. Xiamen, China Wang S et al (2018) First-principles Study on LiFePO4 Materials for lithium-ion battery. In: International workshop on materials, chemistry and engineering—IWMCE, 2018. Xiamen, China
24.
go back to reference Ekman BM (2016) The design, construction and performance of a novel solar simulator and hybrid reactor Ekman BM (2016) The design, construction and performance of a novel solar simulator and hybrid reactor
25.
go back to reference Kazantseva NV, Stepanova NN, Rigmant MB (2018) Superalloys: analysis and control of failure process, 1st edn. CRC Press, Boca Raton, FL Kazantseva NV, Stepanova NN, Rigmant MB (2018) Superalloys: analysis and control of failure process, 1st edn. CRC Press, Boca Raton, FL
26.
go back to reference Knapek M et al (2020) The effect of different thermal treatment on the allotropic fcc↔hcp transformation and compression behavior of polycrystalline cobalt. Materials 13(24):5775CrossRefPubMedPubMedCentral Knapek M et al (2020) The effect of different thermal treatment on the allotropic fcc↔hcp transformation and compression behavior of polycrystalline cobalt. Materials 13(24):5775CrossRefPubMedPubMedCentral
27.
go back to reference Schuett FM et al (2020) Controlled-atmosphere flame fusion single-crystal growth of non-noble fcc, hcp, and bcc metals using copper, cobalt, and iron. Angew Chem Int Ed 59(32):13246–13252CrossRef Schuett FM et al (2020) Controlled-atmosphere flame fusion single-crystal growth of non-noble fcc, hcp, and bcc metals using copper, cobalt, and iron. Angew Chem Int Ed 59(32):13246–13252CrossRef
Metadata
Title
Concentrated-Solar-Thermal-Driven Recycling of Li-Ion Battery Waste Through Carbothermic Reduction: Thermodynamic Assessment and Experimental Verification
Authors
Bintang A. Nuraeni
Deddy C. Nababan
A. D. P. Putera
M. Akbar Rhamdhani
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50236-1_20

Premium Partners