Skip to main content
Top

2022 | OriginalPaper | Chapter

11. Concluding Remarks

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this thesis, we have presented continuum electrochemo-mechanical (ECM) and electrochemo-poromechanical (ECPM) theories suitable for investigating the behavior of porous materials featuring a solid network immersed in a dilute fluid phase of solvent and ions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Akle BJ, Habchi W, Wallmersperger T, Akle EJ, Leo DJ (2011) High surface area electrodes in ionic polymer transducers: Numerical and experimental investigations of the electro-chemical behavior. J Appl Phys 109:074509 Akle BJ, Habchi W, Wallmersperger T, Akle EJ, Leo DJ (2011) High surface area electrodes in ionic polymer transducers: Numerical and experimental investigations of the electro-chemical behavior. J Appl Phys 109:074509
2.
go back to reference Alberts B (1983) Molecular biology of the cell. Garland Science, New York, NY Alberts B (1983) Molecular biology of the cell. Garland Science, New York, NY
3.
go back to reference Ambrosi D, Ben Amar M, Cyron CJ, DeSimone A, Goriely A, Humphrey JD, Kuhl E (2019) Growth and remodelling of living tissues: perspectives, challenges and opportunities. J R Soc Interface 16(157):20190233CrossRef Ambrosi D, Ben Amar M, Cyron CJ, DeSimone A, Goriely A, Humphrey JD, Kuhl E (2019) Growth and remodelling of living tissues: perspectives, challenges and opportunities. J R Soc Interface 16(157):20190233CrossRef
4.
go back to reference Asaka K, Oguro K, Nishimura Y, Mizuhata M, Takenaka H (1995) Bending of polyelectrolyte membrane-platinum composites by electric stimuli I. Response characteristics to various waveforms. Polym J 27(4):436–440 Asaka K, Oguro K, Nishimura Y, Mizuhata M, Takenaka H (1995) Bending of polyelectrolyte membrane-platinum composites by electric stimuli I. Response characteristics to various waveforms. Polym J 27(4):436–440
5.
go back to reference Ateshian GA (2007) On the theory of reactive mixtures for modeling biological growth. Biomech Model Mechanobiol 6(6):423–445CrossRef Ateshian GA (2007) On the theory of reactive mixtures for modeling biological growth. Biomech Model Mechanobiol 6(6):423–445CrossRef
6.
go back to reference Ateshian GA, Morrison B, Hung CT (2010) Modeling of active transmembrane transport in a mixture theory framework. Ann Biomed Eng 38(5):1801–1814CrossRef Ateshian GA, Morrison B, Hung CT (2010) Modeling of active transmembrane transport in a mixture theory framework. Ann Biomed Eng 38(5):1801–1814CrossRef
7.
go back to reference Boldini A, Bardella L, Porfiri M (2020) On structural theories for ionic polymer metal composites: balancing between accuracy and simplicity. J Elast 141:227–272MathSciNetCrossRef Boldini A, Bardella L, Porfiri M (2020) On structural theories for ionic polymer metal composites: balancing between accuracy and simplicity. J Elast 141:227–272MathSciNetCrossRef
8.
go back to reference Boldini A, Porfiri M (2020) Multiaxial deformations of ionic polymer metal composites. Int J Eng Sci 149:103227 Boldini A, Porfiri M (2020) Multiaxial deformations of ionic polymer metal composites. Int J Eng Sci 149:103227
9.
go back to reference Borukhov I, Andelman D, Orland H (2000) Adsorption of large ions from an electrolyte solution: a modified Poisson-Boltzmann equation. Electrochim Acta 46:221–229 Borukhov I, Andelman D, Orland H (2000) Adsorption of large ions from an electrolyte solution: a modified Poisson-Boltzmann equation. Electrochim Acta 46:221–229
10.
go back to reference Cha Y, Aureli M, Porfiri M (2012) A physics-based model of the electrical impedance of ionic polymer metal composites. J Appl Phys 111:124901 Cha Y, Aureli M, Porfiri M (2012) A physics-based model of the electrical impedance of ionic polymer metal composites. J Appl Phys 111:124901
11.
go back to reference Cha Y, Porfiri M (2014) Mechanics and electrochemistry of ionic polymer metal composites. J Mech Phys Solids 71:156–178 Cha Y, Porfiri M (2014) Mechanics and electrochemistry of ionic polymer metal composites. J Mech Phys Solids 71:156–178
12.
go back to reference Farinholt K, Leo DJ (2004) Modeling of electromechanical charge sensing in ionic polymer transducers. Mech Mater 36(5–6):421–433CrossRef Farinholt K, Leo DJ (2004) Modeling of electromechanical charge sensing in ionic polymer transducers. Mech Mater 36(5–6):421–433CrossRef
13.
go back to reference Hong W, Zhao X, Suo Z (2010) Large deformation and electrochemistry of polyelectrolyte gels. J Mech Phys Solids 58:558–577MathSciNetCrossRef Hong W, Zhao X, Suo Z (2010) Large deformation and electrochemistry of polyelectrolyte gels. J Mech Phys Solids 58:558–577MathSciNetCrossRef
14.
go back to reference Jiang H, Sun SX (2013) Cellular pressure and volume regulation and implications for cell mechanics. Biophys J 105(3):609–619CrossRef Jiang H, Sun SX (2013) Cellular pressure and volume regulation and implications for cell mechanics. Biophys J 105(3):609–619CrossRef
15.
go back to reference Kim KJ, Shahinpoor M (2003) Ionic polymer-metal composites: II Manufacturing techniques. Smart Mater Struct 12:65–79CrossRef Kim KJ, Shahinpoor M (2003) Ionic polymer-metal composites: II Manufacturing techniques. Smart Mater Struct 12:65–79CrossRef
16.
17.
go back to reference Liu H, Xiong K, Wang M (2019) A gradient model for Young’s modulus and surface electrode resistance of ionic polymer-metal composite. Acta Mech Solida Sin 32(6):754–766CrossRef Liu H, Xiong K, Wang M (2019) A gradient model for Young’s modulus and surface electrode resistance of ionic polymer-metal composite. Acta Mech Solida Sin 32(6):754–766CrossRef
18.
go back to reference Moeendarbary E, Valon L, Fritzsche M, Harris AR, Moulding DA, Thrasher AJ, Stride E, Mahadevan L, Charras GT (2013) The cytoplasm of living cells behaves as a poroelastic material. Nat Mater 12(3):253–261CrossRef Moeendarbary E, Valon L, Fritzsche M, Harris AR, Moulding DA, Thrasher AJ, Stride E, Mahadevan L, Charras GT (2013) The cytoplasm of living cells behaves as a poroelastic material. Nat Mater 12(3):253–261CrossRef
19.
go back to reference Pietak A, Levin M (2016) Exploring instructive physiological signaling with the BioElectric Tissue Simulation Engine. Front Bioeng Biotechnol 4:55CrossRef Pietak A, Levin M (2016) Exploring instructive physiological signaling with the BioElectric Tissue Simulation Engine. Front Bioeng Biotechnol 4:55CrossRef
20.
go back to reference Porfiri M (2009) Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites. Phys Rev E 79:041503 Porfiri M (2009) Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites. Phys Rev E 79:041503
21.
go back to reference Porfiri M, Leronni A, Bardella L (2017) An alternative explanation of back-relaxation in ionic polymer metal composites. Extreme Mech Lett 13:78–83CrossRef Porfiri M, Leronni A, Bardella L (2017) An alternative explanation of back-relaxation in ionic polymer metal composites. Extreme Mech Lett 13:78–83CrossRef
22.
go back to reference Silver BB, Nelson CM (2018) The bioelectric code: reprogramming cancer and aging from the interface of mechanical and chemical microenvironments. Front Cell Dev Biol 6:21CrossRef Silver BB, Nelson CM (2018) The bioelectric code: reprogramming cancer and aging from the interface of mechanical and chemical microenvironments. Front Cell Dev Biol 6:21CrossRef
23.
go back to reference Silver BB, Wolf AE, Lee J, Pang M-F, Nelson CM (2020) Epithelial tissue geometry directs emergence of bioelectric field and pattern of proliferation. Mol Biol Cell 31:1691–1702CrossRef Silver BB, Wolf AE, Lee J, Pang M-F, Nelson CM (2020) Epithelial tissue geometry directs emergence of bioelectric field and pattern of proliferation. Mol Biol Cell 31:1691–1702CrossRef
24.
go back to reference Sundelacruz S, Levin M, Kaplan DL (2009) Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev Rep 5(3):231–246CrossRef Sundelacruz S, Levin M, Kaplan DL (2009) Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev Rep 5(3):231–246CrossRef
25.
go back to reference Tiwari R, Kim KJ (2010) Effect of metal diffusion on mechanoelectric property of ionic polymer-metal composite. Appl Phys Lett 97:244104 Tiwari R, Kim KJ (2010) Effect of metal diffusion on mechanoelectric property of ionic polymer-metal composite. Appl Phys Lett 97:244104
26.
go back to reference Vanag VK, Epstein IR (2009) Cross-diffusion and pattern formation in reaction-diffusion systems. Phys Chem Chem Phys 11(6):897–912CrossRef Vanag VK, Epstein IR (2009) Cross-diffusion and pattern formation in reaction-diffusion systems. Phys Chem Chem Phys 11(6):897–912CrossRef
27.
go back to reference Wiggins P, Phillips R (2004) Analytic models for mechanotransduction: gating a mechanosensitive channel. Proc Natl Acad Sci USA 101(12):4071–4076CrossRef Wiggins P, Phillips R (2004) Analytic models for mechanotransduction: gating a mechanosensitive channel. Proc Natl Acad Sci USA 101(12):4071–4076CrossRef
28.
go back to reference Yellin F, Li Y, Sreenivasan VK, Farrell B, Johny MB, Yue D, Sun SX (2018) Electromechanics and volume dynamics in nonexcitable tissue cells. Biophys J 114(9):2231–2242CrossRef Yellin F, Li Y, Sreenivasan VK, Farrell B, Johny MB, Yue D, Sun SX (2018) Electromechanics and volume dynamics in nonexcitable tissue cells. Biophys J 114(9):2231–2242CrossRef
30.
go back to reference Zhang H, Dehghany M, Hu Y (2020) Kinetics of Polyelectrolyte Gels. J Appl Mech 87(6):061010 Zhang H, Dehghany M, Hu Y (2020) Kinetics of Polyelectrolyte Gels. J Appl Mech 87(6):061010
Metadata
Title
Concluding Remarks
Author
Alessandro Leronni
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-92276-4_11

Premium Partners