Skip to main content
Top

2016 | OriginalPaper | Chapter

16. Conducting Polymers as EAPs: Applications

Authors : Keiichi Kaneto, Edwin W. H. Jager, Gursel Alici, Hidenori Okuzaki

Published in: Electromechanically Active Polymers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Artificial muscles are the longtime dream of human being to replace the existing engines, motors, and piezoelectric actuators because of the low-noise, environment-friendly, and energy-saving actuators (or power force generators). This chapter describes applications of conducting polymers (CPs) to EAPs such as bending actuators, microactuators, and linear actuators. The bending actuators were applied to diaphragm pumps, swimming devices, and flexural-jointed grippers with the trilayer configurations. On the other hand, the microactuators have the advantage of short diffusion times and thus fast actuation. Since the CP actuators operate in any salt solutions, such as a saline solution, cell culture media, and biological liquid, the PPy microactuators have potential applications in microfluidics and drug delivery, cell biology, and medical devices. Furthermore, the linear actuators were developed for the applications to the Braille cells, artificial muscles for soft robots.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alici G, Huynh NN (2007) Performance quantification of conducting polymer actuators for real applications: a microgripping system. IEEE/ASME Trans Mechatron 12:73–84CrossRef Alici G, Huynh NN (2007) Performance quantification of conducting polymer actuators for real applications: a microgripping system. IEEE/ASME Trans Mechatron 12:73–84CrossRef
go back to reference Alici G, Spinks G, Huynh NN, Sarmadi L, Minato R (2007) Establishment of a biomimetic device based on tri-layer polymer actuators – propulsion fins. Bioinspir Biomim 2:S18CrossRef Alici G, Spinks G, Huynh NN, Sarmadi L, Minato R (2007) Establishment of a biomimetic device based on tri-layer polymer actuators – propulsion fins. Bioinspir Biomim 2:S18CrossRef
go back to reference Alici G, Devaud V, Renaud P, Spinks G (2009) Conducting polymer microactuators operating in air. J Micromech Microeng 19:025017CrossRef Alici G, Devaud V, Renaud P, Spinks G (2009) Conducting polymer microactuators operating in air. J Micromech Microeng 19:025017CrossRef
go back to reference Berdichevsky Y, Lo Y-H (2004) Polymer microvalve based on anisotropic expansion of polypyrrole. In: Materials Research Society symposium- proceedings, 2003, vol 782, Materials Research Society, Boston, p A4.4.1 Berdichevsky Y, Lo Y-H (2004) Polymer microvalve based on anisotropic expansion of polypyrrole. In: Materials Research Society symposium- proceedings, 2003, vol 782, Materials Research Society, Boston, p A4.4.1
go back to reference Carlsson D, Jager E, Krogh M, Skoglund M (2007) Systems, device and object comprising electroactive polymer material, methods and uses relating to operation and provision thereof. Patent WO2009038501 Carlsson D, Jager E, Krogh M, Skoglund M (2007) Systems, device and object comprising electroactive polymer material, methods and uses relating to operation and provision thereof. Patent WO2009038501
go back to reference Carpi F, Kornbluh R, Sommer-Larsen P, Alici G (2011) Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications? Bioinspir Biomim 6:045006CrossRef Carpi F, Kornbluh R, Sommer-Larsen P, Alici G (2011) Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications? Bioinspir Biomim 6:045006CrossRef
go back to reference Ding J, Liu L, Spinks GM, Zhou D, Wallace GG, Gillespie J (2003) High performance conducting polymer actuators utilising a tubular geometry and helical wire interconnects. Synth Met 138:391–398CrossRef Ding J, Liu L, Spinks GM, Zhou D, Wallace GG, Gillespie J (2003) High performance conducting polymer actuators utilising a tubular geometry and helical wire interconnects. Synth Met 138:391–398CrossRef
go back to reference Fang Y, Tan X (2010) A novel diaphragm micropump actuated by conjugated polymer petals: fabrication, modeling, and experimental results. Sens Actuators A 158:121–131CrossRef Fang Y, Tan X (2010) A novel diaphragm micropump actuated by conjugated polymer petals: fabrication, modeling, and experimental results. Sens Actuators A 158:121–131CrossRef
go back to reference Fay C, Lau KT, Beirne S et al (2010) Wireless aquatic navigator for detection and analysis (WANDA). Sens Actuators B 150:425–435CrossRef Fay C, Lau KT, Beirne S et al (2010) Wireless aquatic navigator for detection and analysis (WANDA). Sens Actuators B 150:425–435CrossRef
go back to reference Fonner JM, Forciniti L, Nguyen H, Byrne JD, Kou YF, Syeda-Nawaz J, Schmidt CE (2008) Biocompatibility implications of polypyrrole synthesis techniques. Biomed Mater 3:034124CrossRef Fonner JM, Forciniti L, Nguyen H, Byrne JD, Kou YF, Syeda-Nawaz J, Schmidt CE (2008) Biocompatibility implications of polypyrrole synthesis techniques. Biomed Mater 3:034124CrossRef
go back to reference Gaihre B, Alici G, Spinks GM, Cairney JM (2011) Effect of electrolyte storage layer on performance of PPy-PVDF-PPy microactuators. Sens Actuators B 155:810–816CrossRef Gaihre B, Alici G, Spinks GM, Cairney JM (2011) Effect of electrolyte storage layer on performance of PPy-PVDF-PPy microactuators. Sens Actuators B 155:810–816CrossRef
go back to reference Gelmi A, Ljunggren M, Rafat M, Jager EWH (2014a) Bioelectronic nanofibre scaffolds for tissue engineering and whole-cell biosensors. Biosensors 2014. Melbourne Gelmi A, Ljunggren M, Rafat M, Jager EWH (2014a) Bioelectronic nanofibre scaffolds for tissue engineering and whole-cell biosensors. Biosensors 2014. Melbourne
go back to reference Gelmi A, Ljunggren M, Rafat M, Jager EWH (2014b) Influence of conductive polymer doping on the viability of cardiac progenitor cells. J Mater Chem B 2:3860–3867 Gelmi A, Ljunggren M, Rafat M, Jager EWH (2014b) Influence of conductive polymer doping on the viability of cardiac progenitor cells. J Mater Chem B 2:3860–3867
go back to reference Göttsche T, Haeberle S (2009) Chapter 15. Integrated oral drug delivery system with valve based on polypyrrole. In: Carpi F, Smela E (eds) Biomedical applications of electroactive polymer actuators. John Wiley & Sons, Chichester, UK Göttsche T, Haeberle S (2009) Chapter 15. Integrated oral drug delivery system with valve based on polypyrrole. In: Carpi F, Smela E (eds) Biomedical applications of electroactive polymer actuators. John Wiley & Sons, Chichester, UK
go back to reference Göttsche T, Kohnle J, Schumacher A, Kattinger G, Jager E, Krogh M (2006) Ventil. Patent DE102006005517 Göttsche T, Kohnle J, Schumacher A, Kattinger G, Jager E, Krogh M (2006) Ventil. Patent DE102006005517
go back to reference Gumm D (2002) Rotating stent delivery system for side branch access and protection and method of using same. Patent WO03/017872 Gumm D (2002) Rotating stent delivery system for side branch access and protection and method of using same. Patent WO03/017872
go back to reference Immerstrand C, Peterson KH, Magnusson K-E, Jager E, Krogh M, Skoglund M, Selbing A, Inganäs O (2002) Conjugated-polymer micro- and milliactuators for biological applications. MRS Bull 27:461–464CrossRef Immerstrand C, Peterson KH, Magnusson K-E, Jager E, Krogh M, Skoglund M, Selbing A, Inganäs O (2002) Conjugated-polymer micro- and milliactuators for biological applications. MRS Bull 27:461–464CrossRef
go back to reference Jager EWH (2010) Chapter 8, Conjugated polymers as actuators for medical devices and microsystems. In: Leger J, Carter S, Berggren M (eds) Iontronics – ionic carriers in organic electronic materials and devices. CRC Press, Boca Raton, pp 141–162 Jager EWH (2010) Chapter 8, Conjugated polymers as actuators for medical devices and microsystems. In: Leger J, Carter S, Berggren M (eds) Iontronics – ionic carriers in organic electronic materials and devices. CRC Press, Boca Raton, pp 141–162
go back to reference Jager EWH, Smela E, Inganäs O (1999) On-chip microelectrodes for electrochemistry with moveable PPy bilayer actuators as working electrodes. Sens Actuators B 56:73–78CrossRef Jager EWH, Smela E, Inganäs O (1999) On-chip microelectrodes for electrochemistry with moveable PPy bilayer actuators as working electrodes. Sens Actuators B 56:73–78CrossRef
go back to reference Jager EWH, Inganäs O, Lundström I (2000a) Microrobots for micrometer-size objects in aqueous media: potential tools for single cell manipulation. Science 288:2335–2338CrossRef Jager EWH, Inganäs O, Lundström I (2000a) Microrobots for micrometer-size objects in aqueous media: potential tools for single cell manipulation. Science 288:2335–2338CrossRef
go back to reference Jager EWH, Smela E, Inganäs O (2000b) Microfabricating conjugated polymer actuators. Science 290:1540–1545CrossRef Jager EWH, Smela E, Inganäs O (2000b) Microfabricating conjugated polymer actuators. Science 290:1540–1545CrossRef
go back to reference Jager EWH, Inganäs O, Lundström I (2001) Perpendicular actuation with individually controlled polymer microactuators. Adv Mater 13:76–79CrossRef Jager EWH, Inganäs O, Lundström I (2001) Perpendicular actuation with individually controlled polymer microactuators. Adv Mater 13:76–79CrossRef
go back to reference Jager EWH, Immerstrand C, Petersson KH, Magnusson K-E, Lundström I, Inganäs O (2002) The cell clinic: closable microvials for single cell studies. Biomed Microdevices 4:177–187CrossRef Jager EWH, Immerstrand C, Petersson KH, Magnusson K-E, Lundström I, Inganäs O (2002) The cell clinic: closable microvials for single cell studies. Biomed Microdevices 4:177–187CrossRef
go back to reference Jager E, Carlsson D, Krogh M, Skoglund M (2007) Electroactive polymer actuator devices and systems comprising such devices. Patent WO2008113372 Jager E, Carlsson D, Krogh M, Skoglund M (2007) Electroactive polymer actuator devices and systems comprising such devices. Patent WO2008113372
go back to reference Jager EWH, Masurkar N, Nworah NF, Gaihre B, Alici G, Spinks GM (2013) Patterning and electrical interfacing of individually controllable conducting polymer microactuators. Sens Actuators B 183:283–289CrossRef Jager EWH, Masurkar N, Nworah NF, Gaihre B, Alici G, Spinks GM (2013) Patterning and electrical interfacing of individually controllable conducting polymer microactuators. Sens Actuators B 183:283–289CrossRef
go back to reference Khaldi A, Plesse C, Soyer C, Cattan E, Vidal F, Chevrot C, Teyssié D (2011a) Dry etching process on a conducting interpenetrating polymer network actuator for a flapping fly micro robot. In: ASME 2011 international mechanical engineering congress and exposition, IMECE 2011, vol 2, Denver, pp 755–757 Khaldi A, Plesse C, Soyer C, Cattan E, Vidal F, Chevrot C, Teyssié D (2011a) Dry etching process on a conducting interpenetrating polymer network actuator for a flapping fly micro robot. In: ASME 2011 international mechanical engineering congress and exposition, IMECE 2011, vol 2, Denver, pp 755–757
go back to reference Khaldi A, Plesse C, Soyer C, Cattan E, Vidal F, Legrand C, Teyssié D (2011b) Conducting interpenetrating polymer network sized to fabricate microactuators. Appl Phys Lett 98:164101 Khaldi A, Plesse C, Soyer C, Cattan E, Vidal F, Legrand C, Teyssié D (2011b) Conducting interpenetrating polymer network sized to fabricate microactuators. Appl Phys Lett 98:164101
go back to reference Krogh M, Jager E (2005) Medical devices and methods for their fabrication and use. Patent WO2007057132 Krogh M, Jager E (2005) Medical devices and methods for their fabrication and use. Patent WO2007057132
go back to reference Krogh M, Inganäs O, Jager E (2001) Fibre-reinforced microactuator. Patent WO03039859 Krogh M, Inganäs O, Jager E (2001) Fibre-reinforced microactuator. Patent WO03039859
go back to reference Lee AP, Hong KC, Trevino J, Northrop MA (1994) Thin film conductive polymer for microactuator and micromuscle applications. In: Dynamic and systems and control session, international mechanical engineering congress, vol DSC-2. ASME Publications, Chicago, pp 725–732 Lee AP, Hong KC, Trevino J, Northrop MA (1994) Thin film conductive polymer for microactuator and micromuscle applications. In: Dynamic and systems and control session, international mechanical engineering congress, vol DSC-2. ASME Publications, Chicago, pp 725–732
go back to reference Lee KKC, Munce NR, Shoa T, Charron LG, Wright GA, Madden JD, Yang VXD (2009) Fabrication and characterization of laser-micromachined polypyrrole-based artificial muscle actuated catheters. Sens Actuators A 153:230–236CrossRef Lee KKC, Munce NR, Shoa T, Charron LG, Wright GA, Madden JD, Yang VXD (2009) Fabrication and characterization of laser-micromachined polypyrrole-based artificial muscle actuated catheters. Sens Actuators A 153:230–236CrossRef
go back to reference Low L-M, Seetharaman S, He K-Q, Madou MJ (2000) Microactuators toward microvalves for responsive controlled drug delivery. Sens Actuators B 67:149–160CrossRef Low L-M, Seetharaman S, He K-Q, Madou MJ (2000) Microactuators toward microvalves for responsive controlled drug delivery. Sens Actuators B 67:149–160CrossRef
go back to reference Lundin V, Herland A, Berggren M, Jager EWH, Teixeira AI (2011) Control of neural stem cell survival by electroactive polymer substrates. PLoS One 6:e18624CrossRef Lundin V, Herland A, Berggren M, Jager EWH, Teixeira AI (2011) Control of neural stem cell survival by electroactive polymer substrates. PLoS One 6:e18624CrossRef
go back to reference Madden JDW, Vandesteeg NA, Anquetil PA, Madden PGA, Takshi A, Pytel RZ, Lafontaine SR, Wieringa PA, Hunter IW (2004) Artificial muscle technology: physical principles and naval prospects. IEEE J Ocean Eng 29:706–728CrossRef Madden JDW, Vandesteeg NA, Anquetil PA, Madden PGA, Takshi A, Pytel RZ, Lafontaine SR, Wieringa PA, Hunter IW (2004) Artificial muscle technology: physical principles and naval prospects. IEEE J Ocean Eng 29:706–728CrossRef
go back to reference Maziz A, Plesse C, Soyer C, Chevrot C, Teyssié D, Cattan E, Vidal F (2014) Demonstrating kHz frequency actuation for conducting polymer microactuators. Adv Funct Mater 24:4851–4859CrossRef Maziz A, Plesse C, Soyer C, Chevrot C, Teyssié D, Cattan E, Vidal F (2014) Demonstrating kHz frequency actuation for conducting polymer microactuators. Adv Funct Mater 24:4851–4859CrossRef
go back to reference Mcgovern S, Alici G, Truong V-T, Spinks G (2009) Finding NEMO (novel electromaterial muscle oscillator): a polypyrrole powered robotic fish with real-time wireless speed and directional control. Smart Mater Struct 18:095009CrossRef Mcgovern S, Alici G, Truong V-T, Spinks G (2009) Finding NEMO (novel electromaterial muscle oscillator): a polypyrrole powered robotic fish with real-time wireless speed and directional control. Smart Mater Struct 18:095009CrossRef
go back to reference Naka Y, Fuchiwaki M, Tanaka K (2010) A micropump driven by a polypyrrole-based conducting polymer soft actuator. Polym Int 59:352–356CrossRef Naka Y, Fuchiwaki M, Tanaka K (2010) A micropump driven by a polypyrrole-based conducting polymer soft actuator. Polym Int 59:352–356CrossRef
go back to reference Okuzaki H (ed) (2012) PEDOT: material properties and device applications. Science & Technology, Tokyo Okuzaki H (ed) (2012) PEDOT: material properties and device applications. Science & Technology, Tokyo
go back to reference Okuzaki H, Funasaka K (2000) Electromechanical properties of a humido-sensitive conducting polymer film. Macromolecules 33:8307–8311CrossRef Okuzaki H, Funasaka K (2000) Electromechanical properties of a humido-sensitive conducting polymer film. Macromolecules 33:8307–8311CrossRef
go back to reference Okuzaki H, Kunugi T (1996) Adsorption-induced bending of polypyrrole films and its application to a chemomechanical rotor. J Polym Sci Part B Polym Phys 34:1747–1749CrossRef Okuzaki H, Kunugi T (1996) Adsorption-induced bending of polypyrrole films and its application to a chemomechanical rotor. J Polym Sci Part B Polym Phys 34:1747–1749CrossRef
go back to reference Okuzaki H, Kunugi T (1997) Adsorption-induced chemomechanical behavior of polypyrrole films. J Appl Polym Sci 64:383–388CrossRef Okuzaki H, Kunugi T (1997) Adsorption-induced chemomechanical behavior of polypyrrole films. J Appl Polym Sci 64:383–388CrossRef
go back to reference Okuzaki H, Kunugi T (1998) Electrically induced contraction of polypyrrole film in ambient air. J Polym Sci Part B Polym Phys 36:1591–1594CrossRef Okuzaki H, Kunugi T (1998) Electrically induced contraction of polypyrrole film in ambient air. J Polym Sci Part B Polym Phys 36:1591–1594CrossRef
go back to reference Okuzaki H, Kuwabara T, Kunugi T (1997) A polypyrrole motor driven by sorption of water vapor. Polymer 38:5491–5492CrossRef Okuzaki H, Kuwabara T, Kunugi T (1997) A polypyrrole motor driven by sorption of water vapor. Polymer 38:5491–5492CrossRef
go back to reference Okuzaki H, Kuwabara T, Kunugi T (1998a) Theoretical study of sorption-induced bending of polypyrrole films. J Polym Sci Part B Polym Phys 36:2237–2246CrossRef Okuzaki H, Kuwabara T, Kunugi T (1998a) Theoretical study of sorption-induced bending of polypyrrole films. J Polym Sci Part B Polym Phys 36:2237–2246CrossRef
go back to reference Okuzaki H, Kuwabara T, Kondo T (1998b) Role and effect of dopant ion on sorption-induced motion of polypyrrole films. J Polym Sci Part B Polym Phys 36:2635–2642CrossRef Okuzaki H, Kuwabara T, Kondo T (1998b) Role and effect of dopant ion on sorption-induced motion of polypyrrole films. J Polym Sci Part B Polym Phys 36:2635–2642CrossRef
go back to reference Okuzaki H, Saido T, Hara Y, Yan H (2008) A biomorphic organic actuator fabricated by folding a conducting paper. J Phys Conf Ser 127:12001CrossRef Okuzaki H, Saido T, Hara Y, Yan H (2008) A biomorphic organic actuator fabricated by folding a conducting paper. J Phys Conf Ser 127:12001CrossRef
go back to reference Okuzaki H, Suzuki H, Ito T (2009) Electromechanical properties of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) films. J Phys Chem B 113:11378–11383CrossRef Okuzaki H, Suzuki H, Ito T (2009) Electromechanical properties of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) films. J Phys Chem B 113:11378–11383CrossRef
go back to reference Okuzaki H, Hosaka K, Suzuki H, Ito T (2010) Effect of temperature on humido-sensitive conducting polymer actuators. Sens Actuators A 157:96–99CrossRef Okuzaki H, Hosaka K, Suzuki H, Ito T (2010) Effect of temperature on humido-sensitive conducting polymer actuators. Sens Actuators A 157:96–99CrossRef
go back to reference Okuzaki H, Hosaka K, Suzuki H, Ito T (2013a) Humido-sensitive conducting polymer films and applications to linear actuators. Rect Funct Polym 73:986–992CrossRef Okuzaki H, Hosaka K, Suzuki H, Ito T (2013a) Humido-sensitive conducting polymer films and applications to linear actuators. Rect Funct Polym 73:986–992CrossRef
go back to reference Okuzaki H, Kuwabara T, Funasaka K, Saido T (2013b) Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv Funct Mater 23:4400–4407CrossRef Okuzaki H, Kuwabara T, Funasaka K, Saido T (2013b) Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv Funct Mater 23:4400–4407CrossRef
go back to reference Pettersson F, Jager EWH, Inganäs O (2000) Surface micromachined polymer actuators as valves in PDMS microfluidic system. In: Dittmar A, Beebe D (eds) IEEE-EMBS special topic conference on microtechnologies in medicine and biology, Lyon, 12–14 Oct 2000, pp 334–335 Pettersson F, Jager EWH, Inganäs O (2000) Surface micromachined polymer actuators as valves in PDMS microfluidic system. In: Dittmar A, Beebe D (eds) IEEE-EMBS special topic conference on microtechnologies in medicine and biology, Lyon, 12–14 Oct 2000, pp 334–335
go back to reference Plesse C, Vidal F, Teyssié D, Chevrot C (2010) Conducting polymer artificial muscle fibres: toward an open air linear actuation. Chem Commun 46:2910–2912CrossRef Plesse C, Vidal F, Teyssié D, Chevrot C (2010) Conducting polymer artificial muscle fibres: toward an open air linear actuation. Chem Commun 46:2910–2912CrossRef
go back to reference Prakash SB, Urdaneta M, Christophersen M, Smela E, Abshire P (2008) In situ electrochemical control of electroactive polymer films on a CMOS chip. Sens Actuators B 129:699–704CrossRef Prakash SB, Urdaneta M, Christophersen M, Smela E, Abshire P (2008) In situ electrochemical control of electroactive polymer films on a CMOS chip. Sens Actuators B 129:699–704CrossRef
go back to reference Ruhparwar A, Piontek P, Ungerer M et al (2014) Electrically contractile polymers augment right ventricular output in the heart. Artif Organs. doi:10.1111/aor.12300 (in press) Ruhparwar A, Piontek P, Ungerer M et al (2014) Electrically contractile polymers augment right ventricular output in the heart. Artif Organs. doi:10.1111/aor.12300 (in press)
go back to reference Schmidt CE, Shastri VR, Vacanti JP, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci U S A 94:8948–8953CrossRef Schmidt CE, Shastri VR, Vacanti JP, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci U S A 94:8948–8953CrossRef
go back to reference Sfakiotakis M, Lane DM, Davies JBC (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng 24:237–252CrossRef Sfakiotakis M, Lane DM, Davies JBC (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng 24:237–252CrossRef
go back to reference Smela E (1999) A microfabricated movable electrochromic “pixel” based on polypyrrole. Adv Mater 11:1343–1345CrossRef Smela E (1999) A microfabricated movable electrochromic “pixel” based on polypyrrole. Adv Mater 11:1343–1345CrossRef
go back to reference Smela E, Inganäs O, Pei Q, Lundström I (1993) Electrochemical muscles: micromachining fingers and corkscrews. Adv Mater 5:630–632CrossRef Smela E, Inganäs O, Pei Q, Lundström I (1993) Electrochemical muscles: micromachining fingers and corkscrews. Adv Mater 5:630–632CrossRef
go back to reference Smela E, Inganäs O, Lundström I (1995) Controlled folding of micrometer-size structures. Science 268:1735–1738CrossRef Smela E, Inganäs O, Lundström I (1995) Controlled folding of micrometer-size structures. Science 268:1735–1738CrossRef
go back to reference Smela E, Kallenbach M, Holdenried J (1999) Electrochemically driven polypyrrole bilayers for moving and positioning bulk micromachined silicon plates. J Microelectromech Syst 8:373–383CrossRef Smela E, Kallenbach M, Holdenried J (1999) Electrochemically driven polypyrrole bilayers for moving and positioning bulk micromachined silicon plates. J Microelectromech Syst 8:373–383CrossRef
go back to reference Svennersten K, Berggren M, Richter-Dahlfors A, Jager EWH (2011) Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab Chip 11:3287–3293CrossRef Svennersten K, Berggren M, Richter-Dahlfors A, Jager EWH (2011) Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab Chip 11:3287–3293CrossRef
go back to reference Urdaneta M, Liu Y, Christopherson M, Prakash S, Abshire P, Smela E (2005) Integrating conjugated polymer microactuators with CMOS sensing circuitry for studying living cells. In: Smart structures and materials; electroactive polymer actuators and devices (EAPAD), vol 5759, San Diego, pp 232–240 Urdaneta M, Liu Y, Christopherson M, Prakash S, Abshire P, Smela E (2005) Integrating conjugated polymer microactuators with CMOS sensing circuitry for studying living cells. In: Smart structures and materials; electroactive polymer actuators and devices (EAPAD), vol 5759, San Diego, pp 232–240
go back to reference Vidal F, Plesse C, Palaprat G, Kheddar A, Citerin J, Teyssié D, Chevrot C (2006) Conducting IPN actuators: from polymer chemistry to actuator with linear actuation. Synth Met 156:1299–1304CrossRef Vidal F, Plesse C, Palaprat G, Kheddar A, Citerin J, Teyssié D, Chevrot C (2006) Conducting IPN actuators: from polymer chemistry to actuator with linear actuation. Synth Met 156:1299–1304CrossRef
go back to reference Wang X, Berggren M, Inganäs O (2008) Dynamic control of surface energy and topography of microstructured conducting polymer films. Langmuir 24:5942–5948CrossRef Wang X, Berggren M, Inganäs O (2008) Dynamic control of surface energy and topography of microstructured conducting polymer films. Langmuir 24:5942–5948CrossRef
go back to reference Wilson SA, Jourdain RPJ, Zhang Q et al (2007) New materials for micro-scale sensors and actuators an engineering review. Mater Sci Eng R Rep 56:1–129CrossRef Wilson SA, Jourdain RPJ, Zhang Q et al (2007) New materials for micro-scale sensors and actuators an engineering review. Mater Sci Eng R Rep 56:1–129CrossRef
go back to reference Wong JY, Langer R, Ingber DE (1994) Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proc Natl Acad Sci U S A 91:3201–3204CrossRef Wong JY, Langer R, Ingber DE (1994) Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proc Natl Acad Sci U S A 91:3201–3204CrossRef
go back to reference Wu Y, Zhou D, Spinks GM, Innis PC, Megill WM, Wallace GG (2005) TITAN: a conducting polymer based microfluidic pump. Smart Mater Struct 14:1511CrossRef Wu Y, Zhou D, Spinks GM, Innis PC, Megill WM, Wallace GG (2005) TITAN: a conducting polymer based microfluidic pump. Smart Mater Struct 14:1511CrossRef
go back to reference Xu H, Wang C, Wang C, Zoval J, Madou M (2006) Polymer actuator valves toward controlled drug delivery application. Biosens Bioelectron 21:2094–2099CrossRef Xu H, Wang C, Wang C, Zoval J, Madou M (2006) Polymer actuator valves toward controlled drug delivery application. Biosens Bioelectron 21:2094–2099CrossRef
go back to reference Yamada K, Kume Y, Tabe H (1998) A solid-state electrochemical device using poly(pyrrole) as micro-actuator. Jpn J Appl Phys 37:5798–5799CrossRef Yamada K, Kume Y, Tabe H (1998) A solid-state electrochemical device using poly(pyrrole) as micro-actuator. Jpn J Appl Phys 37:5798–5799CrossRef
go back to reference Zheng W, Alici G, Clingan PR, Munro BJ, Spinks GM, Steele JR, Wallace GG (2013) Polypyrrole stretchable actuators. J Polym Sci Part B Polym Phys 51:57–63CrossRef Zheng W, Alici G, Clingan PR, Munro BJ, Spinks GM, Steele JR, Wallace GG (2013) Polypyrrole stretchable actuators. J Polym Sci Part B Polym Phys 51:57–63CrossRef
go back to reference Zhou JWL, Chan H-Y, To TKH, Lai KWC, Li WJ (2004) Polymer MEMS actuators for underwater micromanipulation. IEEE/ASME Trans Mechatron 9:334–342CrossRef Zhou JWL, Chan H-Y, To TKH, Lai KWC, Li WJ (2004) Polymer MEMS actuators for underwater micromanipulation. IEEE/ASME Trans Mechatron 9:334–342CrossRef
Metadata
Title
Conducting Polymers as EAPs: Applications
Authors
Keiichi Kaneto
Edwin W. H. Jager
Gursel Alici
Hidenori Okuzaki
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-31530-0_16