Skip to main content
Top
Published in: Optical and Quantum Electronics 5/2024

Open Access 01-05-2024

Conformable modeling of normalization and recursional electromagnetic fields of spacelike magnetic curves

Authors: Talat Körpinar, Zeliha Körpinar, Hatice Özdemir

Published in: Optical and Quantum Electronics | Issue 5/2024

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we investigate spacelike magnetic curves according to Bishop frame. Firstly, we present conformable derivatives of Lorentz magnetic fields of these magnetic curves. Moreover, we calculate the conformable derivatives of the normalization and recursional electromagnetic vector fields. Finally, we give conformable energies of normalization and recursional electromagnetic fields related to spacelike magnetic curves.
Notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Optical applications of differential fractional approaches have been used for defining electric and magnetic phases in electromagnetic structures. These approaches generally are used to define the magnetic flux frequency circulations within the structures. Electromagnetic vector fields are presented by model and work of electromagnetic flow with fractional differential structures (de Andrade 2006; Maluf and Faria 2008; Körpinar and Körpinar 2021a, b; Körpınar et al. 2021a, b).
Associated curves bring important geometric definitions to fields of differential geometry, physics, and mathematics in explanation of the behavior of curves and surfaces and in work of particle motion in ordinary space. Also, concepts such as magnetic curves, Bertrand curves, spherical curves, and involute-evolute curve pairs have been widely investigated in fields of differential geometry (do Carmo 1976; Bishop 1975; Bukcu and Karacan 2008; Bükcü and Karacan 2009a; Karacan and Bukcu 2007a; Bükcü and Karacan 2009b; Karacan and Bukcu 2007b, 2008; Maluf and Faria 2008; Körpınar et al. 2021c).
There is no concrete calculation of entropy and energy in Minkowski spacetime in literature research. Diverse efforts have been made to define the energy using local-quasi concepts. But definitions of energy don’t match with each other all time and they are not suitable to spaces of anti de Sitter and de Sitter type (Hayward 1994; Martinez 1994; Epp 2000). It can be started with using local method to make any advancement on the notion of energy in this spacetime. Therefore, it can be said that one of most effective ways to achieve this method is to use geometric properties of particle moving in Minkowski spacetime. Moreover, it is examined that calculation of energy of a specific particle in many spacetimes has various applications (Körpinar 2014; Körpinar and Turhan 2015; Körpinar 2018; Körpinar and Demirkol 2017). Geometrical energy examined its ordinary optical geometric propriety for instances of geometrical physics. Also, diverse methods of geometric phases of energy and fractional magnetic flux for physical energy areas are presented and are computed F-W derivative on \({\mathbb {S}}_{1}^{2}\) by authors (Körpinar and Demirkol 2018; Körpinar 2022).
This work is organized as follows. Firstly, we have given basic definitions of Bishop frame equations for different type of spacelike magnetic curves in space. Then, we have presented a geometrical analysis of conformable energy for electromagnetic vector fields. In the following section, we have computed the conformable derivatives of the normalization and recursional electromagnetic vector fields. Finally, we have given conformable energies of normalization and recursional electromagnetic fields related to spacelike magnetic curves.

2 Preliminaries

Let \(\delta :I\rightarrow {\mathbb {E}}^{3}\) be unit speed magnetic curve. Thus, conformable derivatives according to \(\{\mathbf {t,{\textbf{n}}_{1}, {\textbf{n}}_{2}\}}\) Bishop frame are as
$$\begin{aligned} \nabla _{\delta ^{^{\prime }}}{\textbf{t}}= & {} v^{1-\sigma }k_{1}{\textbf{n}} _{1}+v^{1-\sigma }k_{2}{\textbf{n}}_{2}, \nonumber \\ \nabla _{\delta ^{^{\prime }}}{\textbf{n}}_{1}= & {} -v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{t}}, \nonumber \\ \nabla _{\delta ^{^{\prime }}}{\textbf{n}}_{2}= & {} -v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{t}}. \end{aligned}$$
(1)
Here the vector product is as follows
$$\begin{aligned} \begin{array}{ccc} \epsilon _{{\textbf{t}}}{\textbf{t}}={\textbf{n}}_{1}\mathbf {\times {\textbf{n}}_{2}, }&\epsilon _{\mathbf {{\textbf{n}}_{1}}}\mathbf {{\textbf{n}}_{1}}=\mathbf { {\textbf{n}}_{2}\mathbf {\times }t,}&\epsilon _{\mathbf {{\textbf{n}}_{2}}} \mathbf {{\textbf{n}}_{2}}=\mathbf {t\times {\textbf{n}}_{1}.} \end{array} \end{aligned}$$
and where is \(\epsilon _{{\textbf{X}}}=g({\textbf{X}},{\textbf{X}}).\)
\(\blacklozenge ~\)Let \(\beta \) spacelike magnetic curves according to Bishop frame. Thus, Lorentz equations of magnetic fields are given as
$$\begin{aligned} \nabla _{\delta ^{{\prime }}}{\textbf{t}}= & {} \Pi \left( {\textbf{t}}\right) = {\textbf{G}} {\times }{\textbf{t}}, \nonumber \\ \nabla _{\delta ^{{\prime }}}{\textbf{n}}_{1}= & {} \Pi \left( {\textbf{n}} _{1}\right) ={\textbf{G}} {\times }{\textbf{n}}_{1}, \nonumber \\ \nabla _{\delta ^{{\prime }}}{\textbf{n}}_{2}= & {} \Pi \left( {\textbf{n}} _{2}\right) ={\textbf{G}} {\times }{\textbf{n}}_{2}. \end{aligned}$$
(2)
The first equation is named \({\textbf{t}}-spacelike\) magnetic curvethe second equation is named \({\textbf{n}}_{1}-spacelike\) magnetic curvethe third equation is named \({\textbf{n}} _{2}-spacelike\) magnetic curve.
\(~\blacklozenge ~\)Lorentz magnetic fields of \({\textbf{t}}-spacelike\) magnetic curve are given as
$$\begin{aligned} \begin{array}{c} \Pi ({\textbf{t}})=v^{1-\sigma }k_{1}{\textbf{n}}_{1}+v^{1-\sigma }k_{2}\textbf{n }_{2}, \\ \Pi ({\textbf{n}}_{1})=-v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}} {\textbf{t}}+\rho \epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}, \\ \Pi ({\textbf{n}}_{2})=-v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}} \mathbf {t-}\rho \epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}, \\ \mathbf {G=}\rho \mathbf {t-}v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}} _{2}}}{\textbf{n}}_{1}+v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}} {\textbf{n}}_{2}, \end{array} \end{aligned}$$
(3)
where \(\rho =g(\Pi \left( {\textbf{n}}_{1}\right) ,{\textbf{n}}_{2})\) is conformable differential potential.
\(\blacklozenge ~\)Lorentz magnetic fields of \({\textbf{n}}_{1}-spacelike\) magnetic curve are presented as
$$\begin{aligned} \Pi \left( {\textbf{t}}\right)= & {} v^{1-\sigma }k_{1}\epsilon _{\mathbf {\textbf{ n}_{1}}}{\textbf{n}}_{1}+\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mu \mathbf {{\textbf{n}}_{2},} \\ \Pi \left( {\textbf{n}}_{1}\right)= & {} -v^{1-\sigma }k_{1}\epsilon _{\mathbf { {\textbf{n}}_{1}}}\textbf{t,} \\ \Pi \left( {\textbf{n}}_{2}\right)= & {} -\mu \textbf{t,} \\ {\textbf{G}}= & {} -\mu {\textbf{n}}_{1}+v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\mathbf {{\textbf{n}}_{2},} \end{aligned}$$
where \(\mu =g(\Pi \left( {\textbf{t}}\right) ,{\textbf{n}}_{2})\) is conformable differential potential.
\(\blacklozenge \) Lorentz magnetic fields of \({\textbf{n}}_{2}-spacelike\) magnetic curve are obtained as
$$\begin{aligned} \Pi \left( {\textbf{t}}\right)= & {} \gamma \epsilon _{\mathbf {{\textbf{n}}_{1}}} {\textbf{n}}_{1}+v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}} \mathbf {{\textbf{n}}_{2},} \\ \Pi \left( {\textbf{n}}_{1}\right)= & {} -\gamma \textbf{t,} \\ \Pi \left( {\textbf{n}}_{2}\right)= & {} -v^{1-\sigma }k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}\textbf{t,} \\ {\textbf{G}}= & {} -v^{1-\sigma }k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}\mathbf {{\textbf{n}}_{1}+}\gamma {\textbf{n}}_{2}, \end{aligned}$$
where \(\gamma =g(\Pi \left( {\textbf{t}}\right) ,{\textbf{n}}_{1})\) is conformable differential potential.

3 Conformable normalization and recursional functions of spacelike magnetic curves

Let\(\ \{\mathbf {t,{\textbf{n}}}_{1}\textbf{,n}_{2}\}\) be the Bishop frame, and conformable derivative system is
$$\begin{aligned} \ D_{\sigma }{\textbf{t}}= & {} v^{1-\sigma }k_{1}{\textbf{n}} _{1}+v^{1-\sigma }k_{2}{\textbf{n}}_{2}, \\ D_{\sigma }{\textbf{n}}_{1}= & {} -v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}} _{1}}}\textbf{t,} \\ D_{\sigma }{\textbf{n}}_{2}= & {} -v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}} _{2}}}\mathbf {t.} \end{aligned}$$
Here \(\mu =\det \left( \delta ,\textbf{t,}\nabla _{v}{\textbf{t}}\right) .\)
Normalization operator of \({\mathbb {V}}=a_{0}{\textbf{t}}+a_{1}{\textbf{n}} _{1}+a_{2}{\textbf{n}}_{2}\) is
$$\begin{aligned} {{\mathbb {N}}}{{\mathbb {V}}}={\textbf{I}}_{\sigma }^{a}(a_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}} }k_{1}v^{1-\sigma }+a_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}k_{2}v^{1-\sigma }){\textbf{t}}+a_{1}{\textbf{n}}_{1}+a_{2}{\textbf{n}}_{2}. \end{aligned}$$
Recursional operators \({\mathcal {R}}{\mathbb {V}}\) and \({\mathcal {R}}^{2}{\mathbb {V}}\) are
$$\begin{aligned} {\mathcal {R}}{\mathbb {V}}=-{\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }\mathbb {V }\right) , \end{aligned}$$
and
$$\begin{aligned} {\mathcal {R}}^{2}{\mathbb {V}}=-{\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma } {\mathcal {R}}{\mathbb {V}}\right) . \end{aligned}$$
\(\mathbf {\spadesuit }\)The Lorentz magnetic fields of \({\textbf{t}} -spacelike\) magnetic curve are obtained as
$$\begin{aligned} \begin{array}{c} \Pi ({\textbf{t}})=v^{1-\sigma }k_{1}{\textbf{n}}_{1}+v^{1-\sigma }k_{2}\textbf{n }_{2}, \\ \Pi ({\textbf{n}}_{1})=-v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}} {\textbf{t}}+\rho \epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}, \\ \Pi ({\textbf{n}}_{2})=-v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}} \mathbf {t-}\rho \epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}, \\ \mathbf {G=}\rho \mathbf {t-}v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}} _{2}}}{\textbf{n}}_{1}+v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}} {\textbf{n}}_{2}. \end{array} \end{aligned}$$
(4)
Conformable derivatives of \({\textbf{t}}-spacelike\) magnetic curve Lorentz magnetic fields are
$$\begin{aligned} D_{\sigma }\Pi \left( {\textbf{t}}\right)= & {} -((v^{1-\sigma }k_{1})^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}+(v^{1-\sigma }k_{2})^{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}){\textbf{t}} \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}){\textbf{n}} _{1}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}){\textbf{n}}_{2}, \\ D_{\sigma }\Pi \left( {\textbf{n}}_{1}\right)= & {} -(v^{1-\sigma }\dfrac{d}{dv} (\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{1-\sigma }k_{1})+\rho v^{1-\sigma }k_{2}){\textbf{t}} \\{} & {} -\epsilon _{\mathbf {{\textbf{n}}_{1}}}(v^{1-\sigma }k_{1})^{2}\textbf{ n}_{1}+(v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{2}} })-\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{2-2\sigma }k_{1}k_{2}){\textbf{n}} _{2}, \\ D_{\sigma }\Pi \left( {\textbf{n}}_{2}\right)= & {} (-v^{1-\sigma }\dfrac{d}{dv} (\epsilon _{\mathbf {{\textbf{n}}_{2}}}v^{1-\sigma }k_{2})+\rho v^{1-\sigma }k_{1}){\textbf{t}} \\{} & {} -(v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}} }+v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{1}}})) {\textbf{n}}_{1}-\epsilon _{\mathbf {{\textbf{n}}_{2}}}(v^{1-\sigma }k_{2})^{2} {\textbf{n}}_{2}, \\ D_{\sigma }\textbf{G}= & {} v^{1-\sigma }\dfrac{d\rho }{dv}\mathbf {t+(}\rho v^{1-\sigma }k_{1}-v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}} _{2}}}v^{1-\sigma }k_{2}))\textbf{n}_{1} \\{} & {} +\mathbf {(}\rho v^{1-\sigma }k_{2}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}))\textbf{n}_{2}. \end{aligned}$$
Normalization of these spacelike curves of Lorentz forces are
$$\begin{aligned} {\mathbb {N}}\Pi \left( {\textbf{t}}\right)= & {} {\textbf{I}}_{\sigma }^{a}(\epsilon _{ \mathbf {{\textbf{n}}_{1}}}(k_{1}v^{1-\sigma })^{2}+\epsilon _{\mathbf { {\textbf{n}}_{2}}}(k_{2}v^{1-\sigma })^{2}){\textbf{t}} \\{} & {} +v^{1-\sigma }k_{1}{\textbf{n}}_{1}+v^{1-\sigma }k_{2}{\textbf{n}}_{2}, \\ {\mathbb {N}}\Pi \left( {\textbf{n}}_{1}\right)= & {} {\textbf{I}}_{\sigma }^{a}(\rho k_{2}v^{1-\sigma }){\textbf{t}}+\rho \epsilon _{\mathbf {{\textbf{n}} _{2}}}{\textbf{n}}_{2}, \\ {\mathbb {N}}\Pi \left( {\textbf{n}}_{2}\right)= & {} -{\textbf{I}} _{\sigma }^{a}(\rho k_{1}v^{1-\sigma })\mathbf {t-}\rho \epsilon _{\mathbf { {\textbf{n}}_{1}}}{\textbf{n}}_{1}, \\ {\mathbb {N}}\textbf{G}= & {} c_{0}\mathbf {{\textbf{t}}-}v^{1-\sigma }k_{2}\epsilon _{ \mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{1}+v^{1-\sigma }k_{1}\epsilon _{\mathbf { {\textbf{n}}_{1}}}{\textbf{n}}_{2}, \end{aligned}$$
where \(c_{0}\) is constant of normalized function.
Thus, we get
$$\begin{aligned} D_{\sigma }\Pi \left( {\textbf{t}}\right)= & {} -((v^{1-\sigma }k_{1})^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}+(v^{1-\sigma }k_{2})^{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}){\textbf{t}} \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}){\textbf{n}} _{1}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}){\textbf{n}}_{2}, \\ D_{\sigma }\Pi \left( {\textbf{n}}_{1}\right)= & {} -(v^{1-\sigma }\dfrac{d}{dv} (\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{1-\sigma }k_{1})+\rho v^{1-\sigma }k_{2}){\textbf{t}} \\{} & {} -\epsilon _{\mathbf {{\textbf{n}}_{1}}}(v^{1-\sigma }k_{1})^{2}\textbf{ n}_{1}+(v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{2}} })-\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{2-2\sigma }k_{1}k_{2}){\textbf{n}} _{2}, \\ D_{\sigma }\Pi \left( {\textbf{n}}_{2}\right)= & {} (-v^{1-\sigma }\dfrac{d}{dv} (\epsilon _{\mathbf {{\textbf{n}}_{2}}}v^{1-\sigma }k_{2})+\rho v^{1-\sigma }k_{1}){\textbf{t}} \\{} & {} -(v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}} }+v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{1}}})) {\textbf{n}}_{1}-\epsilon _{\mathbf {{\textbf{n}}_{2}}}(v^{1-\sigma }k_{2})^{2} {\textbf{n}}_{2}, \\ D_{\sigma }\textbf{G}= & {} v^{1-\sigma }\dfrac{d\rho }{dv}\mathbf {t+(}\rho v^{1-\sigma }k_{1}-v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}} _{2}}}v^{1-\sigma }k_{2}))\textbf{n}_{1} \\{} & {} +\mathbf {(}\rho v^{1-\sigma }k_{2}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}))\textbf{n}_{2}, \end{aligned}$$
and we have
$$\begin{aligned}{} & {} {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{t}}\right) =-v^{1-\sigma } \dfrac{d}{dv}(v^{1-\sigma }k_{2})\epsilon _{\mathbf {{\textbf{n}}_{1}}}\textbf{n }_{1}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1})\epsilon _{\mathbf { {\textbf{n}}_{2}}}{\textbf{n}}_{2}, \\{} & {} {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{n}}_{1}\right) =-(v^{1-\sigma } \dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{2}}})-\epsilon _{\mathbf { {\textbf{n}}_{1}}}v^{2-2\sigma }k_{1}k_{2})\epsilon _{\mathbf {{\textbf{n}}_{1}}} {\textbf{n}}_{1}-\epsilon _{\mathbf {{\textbf{n}}_{1}}}(v^{1-\sigma }k_{1})^{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}, \\{} & {} {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{n}}_{2}\right) =-\epsilon _{ \mathbf {{\textbf{n}}_{2}}}(v^{1-\sigma }k_{2})^{2}\epsilon _{\mathbf {{\textbf{n}} _{1}}}{\textbf{n}}_{1}+(v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}+v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {\textbf{n }_{1}}}))\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}, \\{} & {} {\textbf{t}}\times D_{\sigma }{\textbf{G}}=-\mathbf {(}\rho v^{1-\sigma }k_{2}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf { {\textbf{n}}_{1}}}))\textbf{n}_{1}+\mathbf {(}\rho v^{1-\sigma }k_{1}-v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}} }v^{1-\sigma }k_{2}))\textbf{n}_{2}, \end{aligned}$$
moreover, we have
$$\begin{aligned} {\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{t}}\right) \right)= & {} {\textbf{I}}_{\sigma }^{a}(-v^{2-2\sigma }k_{1}\dfrac{d}{dv} (v^{1-\sigma }k_{2}) \\{} & {} +v^{2-2\sigma }k_{2}\dfrac{d}{dv}(v^{1-\sigma }k_{1})){\textbf{t}}-v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2})\epsilon _{\mathbf {{\textbf{n}}_{1}}}\textbf{ n}_{1} \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1})\epsilon _{\mathbf {{\textbf{n}} _{2}}}{\textbf{n}}_{2}, \\ {\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{n}} _{1}\right) \right)= & {} -{\textbf{I}}_{\sigma }^{a}(k_{1}(v^{1-\sigma }\dfrac{d}{ dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{2}}}) \\{} & {} -\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{2-2\sigma }k_{1}k_{2})+v^{3-3\sigma }k_{2}k_{1}^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}){\textbf{t}}-(v^{1-\sigma } \dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{2}}}) \\{} & {} -\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{2-2\sigma }k_{1}k_{2})\epsilon _{ \mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}-\epsilon _{\mathbf {{\textbf{n}} _{1}}}(v^{1-\sigma }k_{1})^{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}} _{2,} \\ {\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{n}} _{2}\right) \right)= & {} {\textbf{I}}_{\sigma }^{a}(v^{3-3\sigma }k_{1}k_{2}{}^{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}} \\{} & {} +v^{1-\sigma }k_{2}(v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2} }}+v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{1}}}))) {\textbf{t}} \\{} & {} -\epsilon _{\mathbf {{\textbf{n}}_{2}}}(v^{1-\sigma }k_{2})^{2}\epsilon _{ \mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}+(v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}} \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{1}} }))\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}, \\ {\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }{\textbf{G}}\right)= & {} {\textbf{I}} _{\sigma }^{a}(-v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\mathbf { (}\rho v^{1-\sigma }k_{2} \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}} _{1}}}))+v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}} \mathbf {(}\rho v^{1-\sigma }k_{1} \\{} & {} -v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}}}v^{1-\sigma }k_{2})))\textbf{t}-\mathbf {(}v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\\{} & {} +\rho v^{1-\sigma }k_{2}))\textbf{n}_{1}+\mathbf {(}\rho v^{1-\sigma }k_{1}-v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}} }v^{1-\sigma }k_{2}))\textbf{n}_{2}. \end{aligned}$$
Recursional operators of \(\Pi \left( {\textbf{t}}\right) ,\Pi \left( {\textbf{n}} _{1}\right) ,\Pi \left( {\textbf{n}}_{2}\right) \) and \({\textbf{G}}\) magnetic fields are
$$\begin{aligned} {\mathcal {R}}\Pi \left( {\textbf{t}}\right)= & {} -{\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{t}}\right) \right) =-{\textbf{I}}_{\sigma }^{a}(-v^{2-2\sigma }k_{1}\dfrac{d}{dv}(v^{1-\sigma }k_{2}) \\{} & {} +v^{2-2\sigma }k_{2}\dfrac{d}{dv}(v^{1-\sigma }k_{1})){\textbf{t}}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2})\epsilon _{\mathbf {{\textbf{n}}_{1}}}\textbf{ n}_{1} \\{} & {} -v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1})\epsilon _{\mathbf {{\textbf{n}} _{2}}}{\textbf{n}}_{2}, \\ {\mathcal {R}}\Pi \left( {\textbf{n}}_{1}\right)= & {} -{\mathbb {N}}\left( {\textbf{t}} \times D_{\sigma }\Pi \left( {\textbf{n}}_{1}\right) \right) ={\textbf{I}} _{\sigma }^{a}(k_{1}(v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf { {\textbf{n}}_{2}}}) \\{} & {} -\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{2-2\sigma }k_{1}k_{2})+v^{3-3\sigma }k_{2}k_{1}^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}){\textbf{t}}+(v^{1-\sigma } \dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{2}}}) \\{} & {} -\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{2-2\sigma }k_{1}k_{2})\epsilon _{ \mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}+(v^{1-\sigma }k_{1})^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\epsilon _{\mathbf {{\textbf{n}} _{2}}}{\textbf{n}}_{2}, \\ {\mathcal {R}}\Pi \left( {\textbf{n}}_{2}\right)= & {} -{\mathbb {N}}\left( {\textbf{t}} \times D_{\sigma }\Pi \left( {\textbf{n}}_{2}\right) \right) =-{\textbf{I}} _{\sigma }^{a}(v^{3-3\sigma }k_{1}k_{2}{}^{2}\epsilon _{\mathbf {{\textbf{n}} _{2}}} \\{} & {} +v^{1-\sigma }k_{2}(v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2} }}+v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{1}}}))) {\textbf{t}} \\{} & {} +\epsilon _{\mathbf {{\textbf{n}}_{2}}}(v^{1-\sigma }k_{2})^{2}\epsilon _{ \mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}-(v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}} \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{1}} }))\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}, \\ {\mathcal {R}}{\textbf{G}}= & {} -{\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }{\textbf{G}}\right) =-{\textbf{I}}_{\sigma }^{a}(-v^{1-\sigma }k_{1}\epsilon _{ \mathbf {{\textbf{n}}_{1}}}\mathbf {(}\rho v^{1-\sigma }k_{2} \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}} _{1}}}))+v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}} \mathbf {(}-v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}} }v^{1-\sigma }k_{2}) \\{} & {} +\rho v^{1-\sigma }k_{1}))\textbf{t}+\mathbf {(}\rho v^{1-\sigma }k_{2}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf { {\textbf{n}}_{1}}}))\textbf{n}_{1} \\{} & {} -\mathbf {(}\rho v^{1-\sigma }k_{1}-v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{ \mathbf {{\textbf{n}}_{2}}}v^{1-\sigma }k_{2}))\textbf{n}_{2}. \end{aligned}$$
\(\mathbf {\spadesuit }\) The Lorentz magnetic fields of \({\textbf{n}} _{1}-spacelike\) magnetic curve are
$$\begin{aligned} \Pi \left( {\textbf{t}}\right)= & {} v^{1-\sigma }k_{1}\epsilon _{\mathbf {\textbf{ n}_{1}}}{\textbf{n}}_{1}+\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mu \mathbf {{\textbf{n}}_{2},} \\ \Pi \left( {\textbf{n}}_{1}\right)= & {} -v^{1-\sigma }k_{1}\epsilon _{\mathbf { {\textbf{n}}_{1}}}\textbf{t,} \\ \Pi \left( {\textbf{n}}_{2}\right)= & {} -\mu \textbf{t,} \\ {\textbf{G}}= & {} -\mu {\textbf{n}}_{1}+v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\mathbf {{\textbf{n}}_{2}.} \end{aligned}$$
Conformable derivatives of magnetic fields are
$$\begin{aligned} D_{\sigma }\Pi \left( {\textbf{t}}\right)= & {} -((v^{1-\sigma }k_{1}\epsilon _{ \mathbf {{\textbf{n}}_{1}}})^{2}+\mu v^{1-\sigma }k_{2}){\textbf{t}} \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf { {\textbf{n}}_{1}}}){\textbf{n}}_{1}+v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{ \mathbf {{\textbf{n}}_{2}}}\mu ){\textbf{n}}_{2}, \\ D_{\sigma }\Pi \left( {\textbf{n}}_{1}\right)= & {} -v^{1-\sigma }\dfrac{d}{dv} (v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}){\textbf{t}} \\{} & {} -v^{2-2\sigma }k_{1}^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\textbf{n }_{1}-v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}} _{2}, \\ D_{\sigma }\Pi \left( {\textbf{n}}_{2}\right)= & {} -v^{1-\sigma }\dfrac{d\mu }{dv} \mathbf {t-}\mu k_{1}v^{1-\sigma }{\textbf{n}}_{1}-\mu v^{1-\sigma }k_{2} {\textbf{n}}_{2}, \\ D_{\sigma }\textbf{G}= & {} (\mu \epsilon _{\mathbf {{\textbf{n}}_{1}} }k_{1}v^{2-2\sigma }-k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\epsilon _{ \mathbf {{\textbf{n}}_{2}}}v^{2-2\sigma }){\textbf{t}} \\{} & {} -v^{1-\sigma }\dfrac{d\mu }{dv}{\textbf{n}}_{1}+v^{1-\sigma }\dfrac{d}{dv} (k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{1-\sigma }){\textbf{n}}_{2}. \end{aligned}$$
Normalizations of Lorentz fields are
$$\begin{aligned} {\mathbb {N}}\Pi \left( {\textbf{t}}\right)= & {} {\textbf{I}}_{\sigma }^{a}((k_{1}v^{1-\sigma })^{2} \\{} & {} +\mu v^{1-\sigma }k_{2}){\textbf{t}} \\{} & {} +v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}\mathbf {+ }\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mu \mathbf {{\textbf{n}}_{2},} \\ {\mathbb {N}}\Pi \left( {\textbf{n}}_{1}\right)= & {} c_{1}\textbf{t,} \\ {\mathbb {N}}\Pi \left( {\textbf{n}}_{2}\right)= & {} c_{2}{\textbf{t}}, \\ {\mathbb {N}}\textbf{G}= & {} {\textbf{I}}_{\sigma }^{a}\mathbf {(-}\mu \epsilon _{ \mathbf {{\textbf{n}}_{1}}}k_{1}v^{1-\sigma } \\{} & {} +v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\epsilon _{ \mathbf {{\textbf{n}}_{2}}}){\textbf{t}} \\{} & {} -\mu {\textbf{n}}_{1}+v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}} _{1}}}\mathbf {{\textbf{n}}_{2},} \end{aligned}$$
where \(c_{1},c_{2}\) are constants of normalized function.
Also, we have
$$\begin{aligned} {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{t}}\right)= & {} -v^{1-\sigma } \dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mu )\epsilon _{\mathbf { {\textbf{n}}_{1}}}{\textbf{n}}_{1}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}})\epsilon _{\mathbf {{\textbf{n}}_{2}}} {\textbf{n}}_{2}, \\ {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{n}}_{1}\right)= & {} v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}\epsilon _{\mathbf {{\textbf{n}} _{1}}}{\textbf{n}}_{1}-v^{2-2\sigma }k_{1}^{2}\epsilon _{\mathbf { {\textbf{n}}_{1}}}\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}, \\ {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{n}}_{2}\right)= & {} \mu v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}- \mu k_{1}v^{1-\sigma }\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2} , \\ {\textbf{t}}\times D_{\sigma }{\textbf{G}}= & {} -v^{1-\sigma } \dfrac{d}{dv}(k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{1-\sigma })\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}-v^{1-\sigma }\dfrac{d\mu }{dv} \epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}, \end{aligned}$$
and
$$\begin{aligned} {\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{t}}\right) \right)= & {} \mathbf {{\textbf{I}}}_{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{dv} (\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mu )+k_{2}v^{2-2\sigma }\dfrac{d}{dv} (v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}))\mathbf {{\textbf{t}}} \\{} & {} -v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mu )\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}+v^{1-\sigma }\dfrac{d}{dv} (v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}})\epsilon _{\mathbf { {\textbf{n}}_{2}}}{\textbf{n}}_{2}, \\ {\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{n}} _{1}\right) \right)= & {} \mathbf {{\textbf{I}}}_{\sigma }^{a}(v^{2-2\sigma }k_{1}^{2}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}-v^{2-2\sigma }k_{1}^{2}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}})\mathbf {{\textbf{t}}} \\{} & {} +v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}} }\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}-v^{2-2\sigma }k_{1}^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\epsilon _{\mathbf {{\textbf{n}} _{2}}}{\textbf{n}}_{2}, \\ {\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{n}} _{2}\right) \right)= & {} c_{3}\mathbf {{\textbf{t}}}+\mu v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}-\mu k_{1}v^{1-\sigma }\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}, \\ {\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }{\textbf{G}}\right)= & {} \mathbf { {\textbf{I}}}_{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{dv}(k_{1}\epsilon _{ \mathbf {{\textbf{n}}_{1}}}v^{1-\sigma })-v^{2-2\sigma }k_{2}\dfrac{d\mu }{dv}) \mathbf {{\textbf{t}}} \\{} & {} -v^{1-\sigma }\dfrac{d}{dv}(k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}} }v^{1-\sigma })\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}-v^{1-\sigma }\dfrac{d\mu }{dv}\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}, \end{aligned}$$
where is \(c_{3}\) recursion function.
Recursional \(\Pi \left( {\textbf{t}}\right) ,\Pi \left( {\textbf{n}}_{1}\right) ,\Pi \left( {\textbf{n}}_{2}\right) ,{\textbf{G}}\) magnetic fields are as following
$$\begin{aligned} {\mathcal {R}}\Pi \left( {\textbf{t}}\right)= & {} -{\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{t}}\right) \right) =-\mathbf {{\textbf{I}}} _{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {\textbf{n }_{2}}}\mu )+k_{2}v^{2-2\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{ \mathbf {{\textbf{n}}_{1}}}))\mathbf {{\textbf{t}}} \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mu )\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}-v^{1-\sigma }\dfrac{d}{dv} (v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}})\epsilon _{\mathbf { {\textbf{n}}_{2}}}{\textbf{n}}_{2}, \\ {\mathcal {R}}\Pi \left( {\textbf{n}}_{1}\right)= & {} -{\mathbb {N}}\left( {\textbf{t}} \times D_{\sigma }\Pi \left( {\textbf{n}}_{1}\right) \right) =-\mathbf {\textbf{ I}}_{\sigma }^{a}(v^{2-2\sigma }k_{1}^{2}k_{2}\epsilon _{\mathbf {{\textbf{n}} _{2}}}-v^{2-2\sigma }k_{1}^{2}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}) \mathbf {{\textbf{t}}} \\{} & {} -v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}} }\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}+v^{2-2\sigma }k_{1}^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\epsilon _{\mathbf {{\textbf{n}} _{2}}}{\textbf{n}}_{2}, \\ {\mathcal {R}}\Pi \left( {\textbf{n}}_{2}\right)= & {} -{\mathbb {N}}\left( {\textbf{t}} \times D_{\sigma }\Pi \left( {\textbf{n}}_{2}\right) \right) =c_{3}\mathbf { {\textbf{t}}}-\mu v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\textbf{ n}_{1}+\mu k_{1}v^{1-\sigma }\epsilon _{\mathbf {{\textbf{n}}_{2}}} {\textbf{n}}_{2}, \\ {\mathcal {R}}\textbf{G}= & {} -{\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }\textbf{G }\right) =-\mathbf {{\textbf{I}}}_{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{dv }(k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{1-\sigma })-v^{2-2\sigma }k_{2} \dfrac{d\mu }{dv})\mathbf {{\textbf{t}}} \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}} }v^{1-\sigma })\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}+v^{1-\sigma }\dfrac{d\mu }{dv}\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}. \end{aligned}$$
\(\mathbf {\spadesuit }\)The Lorentz magnetic fields of \({\textbf{n}} _{2}-spacelike\) magnetic curve are
$$\begin{aligned} \Pi \left( {\textbf{t}}\right)= & {} \gamma \epsilon _{\mathbf {{\textbf{n}}_{1}}} {\textbf{n}}_{1}+v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}} \mathbf {{\textbf{n}}_{2},} \\ \Pi \left( {\textbf{n}}_{1}\right)= & {} -\gamma \textbf{t,} \\ \Pi \left( {\textbf{n}}_{2}\right)= & {} -v^{1-\sigma }k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}\textbf{t,} \\ {\textbf{G}}= & {} -v^{1-\sigma }k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}\mathbf {{\textbf{n}}_{1}+}\gamma {\textbf{n}}_{2}. \end{aligned}$$
Conformable derivatives of Lorentz forces are
$$\begin{aligned} D_{\sigma }\Pi \left( {\textbf{t}}\right)= & {} -((v^{1-\sigma }k_{2})^{2}+\gamma v^{1-\sigma }k_{1}){\textbf{t}} \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(\gamma \epsilon _{\mathbf {{\textbf{n}}_{1} }}){\textbf{n}}_{1}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{ \mathbf {{\textbf{n}}_{2}}}){\textbf{n}}_{2}, \\ D_{\sigma }\Pi \left( {\textbf{n}}_{1}\right)= & {} -v^{1-\sigma }\dfrac{d\gamma }{ dv}\mathbf {t-}\gamma k_{1}v^{1-\sigma }{\textbf{n}}_{1}-\gamma k_{2}v^{1-\sigma }{\textbf{n}}_{2}, \\ D_{\sigma }\Pi \left( {\textbf{n}}_{2}\right)= & {} -v^{1-\sigma }\dfrac{d}{dv} (v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}){\textbf{t}} \\{} & {} -v^{2-2\sigma }k_{2}k_{1}\epsilon _{\mathbf {{\textbf{n}}_{2}}}\textbf{ n}_{1}-v^{2-2\sigma }k_{2}^{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}} _{2}, \\ D_{\sigma }{\textbf{G}}= & {} (v^{2-2\sigma }\epsilon _{\mathbf {{\textbf{n}}_{1}} }\epsilon _{\mathbf {{\textbf{n}}_{2}}}k_{1}k_{2}-\gamma k_{2}\epsilon _{ \mathbf {{\textbf{n}}_{2}}}v^{1-\sigma }){\textbf{t}} \\{} & {} -v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}){\textbf{n}}_{1}+v^{1-\sigma }\dfrac{d\gamma }{dv}{\textbf{n}} _{2}. \end{aligned}$$
Normalizations of Lorentz fields are
$$\begin{aligned} {\mathbb {N}}\Pi \left( {\textbf{t}}\right)= & {} {\textbf{I}}_{\sigma }^{a}(\gamma k_{1}v^{1-\sigma }+(k_{2}v^{1-\sigma })^{2}){\textbf{t}} \\{} & {} +\gamma \epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}+ v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mathbf {{\textbf{n}}_{2},} \\ {\mathbb {N}}\Pi \left( {\textbf{n}}_{1}\right)= & {} c_{4}\textbf{t,} \\ {\mathbb {N}}\Pi \left( {\textbf{n}}_{2}\right)= & {} c_{5}{\textbf{t}}, \\ {\mathbb {N}}\textbf{G}= & {} {\textbf{I}}_{\sigma }^{a}(-v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}\epsilon _{\mathbf {{\textbf{n}} _{1}}} \\{} & {} +v^{1-\sigma }\gamma \epsilon _{\mathbf {{\textbf{n}}_{2}}}k_{2})\textbf{t}- v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mathbf {{\textbf{n}}_{1}+} \gamma {\textbf{n}}_{2}, \end{aligned}$$
where \(c_{4,}\) \(c_{5}\) are constants of normalized function. Then, we get
$$\begin{aligned} {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{t}}\right)= & {} -v^{1-\sigma } \dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}})\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}+v^{1-\sigma }\dfrac{d}{dv}(\gamma \epsilon _{\mathbf {{\textbf{n}}_{1}}})\epsilon _{\mathbf {{\textbf{n}}_{2}}} {\textbf{n}}_{2}, \\ {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{n}}_{1}\right)= & {} \gamma k_{2}v^{1-\sigma }\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}- \gamma k_{1}v^{1-\sigma }\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2} , \\ {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{n}}_{2}\right)= & {} v^{2-2\sigma }k_{2}^{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}\epsilon _{\mathbf {{\textbf{n}} _{1}}}{\textbf{n}}_{1}-v^{2-2\sigma }k_{2}k_{1}{\textbf{n}}_{2}, \\ {\textbf{t}}\times D_{\sigma }{\textbf{G}}= & {} v^{1-\sigma }\dfrac{d\gamma }{dv} \epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}-v^{1-\sigma } \dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}})\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}, \end{aligned}$$
and
$$\begin{aligned} {\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{t}}\right) \right)= & {} {\textbf{I}}_{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{dv} (v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}})+k_{2}v^{2-2\sigma } \dfrac{d}{dv}(\gamma \epsilon _{\mathbf {{\textbf{n}}_{1}}})){\textbf{t}} \\{} & {} -v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}} _{2}}})\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}+v^{1-\sigma }\dfrac{ d}{dv}(\gamma \epsilon _{\mathbf {{\textbf{n}}_{1}}})\epsilon _{\mathbf {\textbf{ n}_{2}}}{\textbf{n}}_{2}, \\ {\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{n}} _{1}\right) \right)= & {} c_{6}\mathbf {t+}\gamma k_{2}v^{1-\sigma }\epsilon _{ \mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1}-\gamma k_{1}v^{1-\sigma }\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}, \\ {\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{n}} _{2}\right) \right)= & {} c_{7}\mathbf {t+}v^{2-2\sigma }k_{2}^{2}\epsilon _{ \mathbf {{\textbf{n}}_{2}}}\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1} -v^{2-2\sigma }k_{2}k_{1}{\textbf{n}}_{2}, \\ {\mathbb {N}}({\textbf{t}}\times D_{\sigma }\textbf{G})= & {} {\textbf{I}}_{\sigma }^{a}( \dfrac{d\gamma }{dv}v^{2-2\sigma }k_{1}-v^{2-2\sigma }k_{2}\dfrac{d}{dv} (v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}})){\textbf{t}} \\{} & {} +v^{1-\sigma }\dfrac{d\gamma }{dv}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\textbf{ n}_{1}-v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{ \mathbf {{\textbf{n}}_{2}}})\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}, \end{aligned}$$
where \(c_{6},\) \(c_{7}\) are constants of normalized potential.
Recursional operators of \(\Pi \left( {\textbf{t}}\right) ,\Pi \left( {\textbf{n}} _{1}\right) ,\Pi \left( {\textbf{n}}_{2}\right) ,{\textbf{G}}\) magnetic fields are
$$\begin{aligned} {\mathcal {R}}\Pi \left( {\textbf{t}}\right)= & {} -{\mathbb {N}}\left( {\textbf{t}}\times D_{\sigma }\Pi \left( {\textbf{t}}\right) \right) =-{\textbf{I}}_{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}) \\{} & {} +k_{2}v^{2-2\sigma }\dfrac{d}{dv}(\gamma \epsilon _{\mathbf {{\textbf{n}}_{1}} })){\textbf{t}}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{ \mathbf {{\textbf{n}}_{2}}})\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}} _{1}-v^{1-\sigma }\dfrac{d}{dv}(\gamma \epsilon _{\mathbf {{\textbf{n}}_{1}} })\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}, \\ {\mathcal {R}}\Pi \left( {\textbf{n}}_{1}\right)= & {} -{\mathbb {N}}\left( {\textbf{t}} \times D_{\sigma }\Pi \left( {\textbf{n}}_{1}\right) \right) =c_{6}\mathbf {t-} \gamma k_{2}v^{1-\sigma }\epsilon _{\mathbf {{\textbf{n}}_{1}}}{\textbf{n}}_{1} +\gamma k_{1}v^{1-\sigma }\epsilon _{\mathbf {{\textbf{n}}_{2}}} {\textbf{n}}_{2}, \\ {\mathcal {R}}\Pi \left( {\textbf{n}}_{2}\right)= & {} -{\mathbb {N}}\left( {\textbf{t}} \times D_{\sigma }\Pi \left( {\textbf{n}}_{2}\right) \right) =c_{7}\mathbf {t-} v^{2-2\sigma }k_{2}^{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}\epsilon _{\mathbf { {\textbf{n}}_{1}}}{\textbf{n}}_{1}+v^{2-2\sigma }k_{2}k_{1}{\textbf{n}} _{2}, \\ {\mathcal {R}}{\textbf{G}}= & {} -\mathbb {N(}{\textbf{t}}\times D_{\sigma }\mathbf {G)}=- {\textbf{I}}_{\sigma }^{a}(\dfrac{d\gamma }{dv}v^{2-2\sigma }k_{1}-v^{2-2\sigma }k_{2}\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}})){\textbf{t}} \\{} & {} +v^{1-\sigma }\dfrac{d\gamma }{dv}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\textbf{ n}_{1}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{ \mathbf {{\textbf{n}}_{2}}})\epsilon _{\mathbf {{\textbf{n}}_{2}}}{\textbf{n}}_{2}. \end{aligned}$$

4 Conformable energies of spacelike magnetic curves

In this section, we compute the conformable energy characterized by Sasaki metric of normalization and recursion operator of spacelike magnetic curves according to Bishop frame.
Let be Riemann manifolds \((M,\rho )\) and (sh) magnetic energy of differentiable map \(q:(M,\rho )\rightarrow (s,h).\) Sasaki metric energy is characterized as the following
$$\begin{aligned} {\mathbb {E}}(q)=\dfrac{1}{2}\mathbf {\int }_{M}\sum h(dq(p_{a}),dq(p_{a}))\upsilon . \end{aligned}$$
(5)
Here \(\{p_{a}\}\) is base of ordinary space and \(\upsilon \) is canonical type in M.

4.1 Conformable energy of normalized electromagnetic fields

In this part, the conformable energy of normalized \(\Pi \left( {\textbf{t}} \right) ,\Pi \left( {\textbf{n}}_{1}\right) ,\Pi \left( {\textbf{n}}_{2}\right) \) and \({\textbf{G}}\) electromagnetic fields are calculated. Also, geometrical and physical characterizations for energies of normalization operator of these electromagnetic fields are presented.
\(\mathbf {\spadesuit }\) The energy of normalized \(\Pi \left( {\textbf{t}}\right) ,\Pi \left( {\textbf{n}}_{1}\right) ,\Pi \left( {\textbf{n}} _{2}\right) ,{\textbf{G}}\) magnetic fields for \({\textbf{t}}-spacelike\)  magnetic curve are presented as following
$$\begin{aligned} D_{\sigma }{\mathbb {N}}\Pi \left( {\textbf{t}}\right)= & {} (v^{1-\sigma }k_{1} {\textbf{I}}_{\sigma }^{a}(\epsilon _{\mathbf {{\textbf{n}}_{1}} }(k_{1}v^{1-\sigma })^{2}+\epsilon _{\mathbf {{\textbf{n}}_{2}} }(k_{2}v^{1-\sigma })^{2})+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1})){\textbf{n}}_{1} \\{} & {} +(v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}(\epsilon _{\mathbf {{\textbf{n}} _{1}}}(k_{1}v^{1-\sigma })^{2}+\epsilon _{\mathbf {{\textbf{n}}_{2}} }(k_{2}v^{1-\sigma })^{2})+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2})){\textbf{n}}_{2}, \\ D_{\sigma }{\mathbb {N}}\Pi \left( {\textbf{n}}_{1}\right)= & {} k_{1}v^{1-\sigma } {\textbf{I}}_{\sigma }^{a}(\rho k_{2}v^{1-\sigma }){\textbf{n}} _{1}+(k_{2}v^{1-\sigma }{\textbf{I}}_{\sigma }^{a}(\rho k_{2}v^{1-\sigma })+v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{2}}})) {\textbf{n}}_{2}, \\ D_{\sigma }{\mathbb {N}}\Pi \left( {\textbf{n}}_{2}\right)= & {} -(v^{1-\sigma }k_{1} {\textbf{I}}_{\sigma }^{a}(\rho k_{1}v^{1-\sigma })+v^{1-\sigma }\dfrac{d}{dv} (\rho \epsilon _{{\textbf{n}}_{1}})){\textbf{n}}_{1}-k_{2}v^{1-\sigma } {\textbf{I}}_{\sigma }^{a}(\rho k_{1}v^{1-\sigma }){\textbf{n}}_{2}, \\ D_{\sigma }{\mathbb {N}}\textbf{G}= & {} (c_{0}v^{1-\sigma }k_{1}- v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}} _{2}}})){\textbf{n}}_{1}+\mathbf {(}c_{0}v^{1-\sigma }k_{2}+v^{1-\sigma }\dfrac{ d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}})){\textbf{n}}_{2}, \end{aligned}$$
and we have conformable energy
$$\begin{aligned} {\mathbb {E}}({\mathbb {N}}\Pi \left( {\textbf{t}}\right) )= & {} \dfrac{1}{2}{\textbf{I}} _{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(v^{1-\sigma }k_{1} {\textbf{I}}_{\sigma }^{a}(\epsilon _{\mathbf {{\textbf{n}}_{1}} }(k_{1}v^{1-\sigma })^{2}+\epsilon _{\mathbf {{\textbf{n}}_{2}} }(k_{2}v^{1-\sigma })^{2})+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}))^{2} \\{} & {} +\epsilon _{\mathbf {{\textbf{n}}_{2}}}(v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}(\epsilon _{\mathbf {{\textbf{n}}_{1}}}(k_{1}v^{1-\sigma }) ^{2}+\epsilon _{\mathbf {{\textbf{n}}_{2}}}(k_{2}v^{1-\sigma }) ^{2})+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}))^{2}), \\ {\mathbb {E}}({\mathbb {N}}\Pi \left( {\textbf{n}}_{1}\right) )= & {} \dfrac{1}{2}\textbf{I }_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(k_{1}v^{1-\sigma } {\textbf{I}}_{\sigma }^{a}(\rho k_{2}v^{1-\sigma }))^{2}+\epsilon _{\mathbf { {\textbf{n}}_{2}}}(k_{2}v^{1-\sigma }{\textbf{I}}_{\sigma }^{a}(\rho k_{2}v^{1-\sigma })+v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf { {\textbf{n}}_{2}}}))^{2}), \\ {\mathbb {E}}({\mathbb {N}}\Pi \left( {\textbf{n}}_{2}\right) )= & {} \dfrac{1}{2}\textbf{I }_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(v^{1-\sigma }k_{1} {\textbf{I}}_{\sigma }^{a}(\rho k_{1}v^{1-\sigma })+v^{1-\sigma }\dfrac{d}{dv} (\rho \epsilon _{{\textbf{n}}_{1}}))^{2}+\epsilon _{\mathbf {{\textbf{n}}_{2}} }(k_{2}v^{1-\sigma }{\textbf{I}}_{\sigma }^{a}(\rho k_{1}v^{1-\sigma }))^{2}), \\ {\mathbb {E}}({\mathbb {N}}\textbf{G})= & {} \dfrac{1}{2}{\textbf{I}}_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}\mathbf {(}c_{0}v^{1-\sigma }k_{1} -v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}))^{2}+\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mathbf {(} c_{0}v^{1-\sigma }k_{2}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}))^{2}). \end{aligned}$$
\(\mathbf {\spadesuit }\) The energy of normalized \(\Pi \left( {\textbf{t}}\right) ,\Pi \left( {\textbf{n}}_{1}\right) ,\Pi \left( {\textbf{n}} _{2}\right) ,{\textbf{G}}\) magnetic fields for \({\textbf{n}} _{1}-spacelike\) magnetic curve are given as following
$$\begin{aligned} D_{\sigma }{\mathbb {N}}\Pi \left( {\textbf{t}}\right)= & {} (v^{1-\sigma }k_{1} {\textbf{I}}_{\sigma }^{a}((k_{1}v^{1-\sigma })^{2}+\mu v^{1-\sigma }k_{2}) \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}} _{1}}})){\textbf{n}}_{1}+(v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}((k_{1}v^{1-\sigma })^{2} \\{} & {} +\mu v^{1-\sigma }k_{2})+v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf { {\textbf{n}}_{2}}}\mu )){\textbf{n}}_{2}, \\ D_{\sigma }{\mathbb {N}}\Pi \left( {\textbf{n}}_{1}\right)= & {} k_{1}v^{1-\sigma }c_{1}{\textbf{n}}_{1}+k_{2}v^{1-\sigma }c_{1}{\textbf{n}}_{2}, \\ D_{\sigma }{\mathbb {N}}\Pi \left( {\textbf{n}}_{2}\right)= & {} k_{1}v^{1-\sigma }c_{2}{\textbf{n}}_{1}+k_{2}v^{1-\sigma }c_{2}{\textbf{n}}_{2}, \\ D_{\sigma }{\mathbb {N}}\textbf{G}= & {} (v^{1-\sigma }k_{1}\mathbf {{\textbf{I}}} _{\sigma }^{a}(v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{1}} }\epsilon _{\mathbf {{\textbf{n}}_{2}}} \\{} & {} -\mu \epsilon _{\mathbf {{\textbf{n}}_{1}}}k_{1}v^{1-\sigma })-v^{1-\sigma }\dfrac{d\mu }{dv}){\textbf{n}}_{1}+\mathbf {(}v^{1-\sigma }k_{2} \mathbf {{\textbf{I}}}_{\sigma }^{a}\mathbf {(-}\mu \epsilon _{\mathbf {{\textbf{n}} _{1}}}k_{1}v^{1-\sigma } \\{} & {} +v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\epsilon _{ \mathbf {{\textbf{n}}_{2}}})+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}})){\textbf{n}}_{2}, \end{aligned}$$
and we obtain conformable energy
$$\begin{aligned} {\mathbb {E}}({\mathbb {N}}\Pi \left( {\textbf{t}}\right) )= & {} \dfrac{1}{2}{\textbf{I}} _{\sigma }^{a}(1+(v^{1-\sigma }k_{1}{\textbf{I}}_{\sigma }^{a}((k_{1}v^{1-\sigma })^{2}+\mu v^{1-\sigma }k_{2})+v^{1-\sigma } \dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}))^{2} \\{} & {} +(v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}((k_{1}v^{1-\sigma }) ^{2}+\mu v^{1-\sigma }k_{2})+v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf { {\textbf{n}}_{2}}}\mu ))^{2}, \\ {\mathbb {E}}({\mathbb {N}}\Pi \left( {\textbf{n}}_{1}\right) )= & {} \dfrac{1}{2}\textbf{I }_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(k_{1}v^{1-\sigma }c_{1})^{2}+\epsilon _{\mathbf {{\textbf{n}}_{2}}}(k_{2}v^{1-\sigma }c_{1})^{2}), \\ {\mathbb {E}}({\mathbb {N}}\Pi \left( {\textbf{n}}_{2}\right) )= & {} \dfrac{1}{2}\textbf{I }_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(k_{1}v^{1-\sigma }c_{2})^{2}+\epsilon _{\mathbf {{\textbf{n}}_{2}}}(k_{2}v^{1-\sigma }c_{2})^{2}) , \\ {\mathbb {E}}({\mathbb {N}}\mathbf {G)}= & {} \dfrac{1}{2}{\textbf{I}}_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}\mathbf {(}v^{1-\sigma }k_{1} \mathbf {{\textbf{I}}}_{\sigma }^{a}\mathbf {(-}\mu \epsilon _{\mathbf {{\textbf{n}} _{1}}}k_{1}v^{1-\sigma }+v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {\textbf{n }_{1}}}\epsilon _{\mathbf {{\textbf{n}}_{2}}})-v^{1-\sigma }\dfrac{d\mu }{dv} )^{2} \\{} & {} +\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mathbf {(}v^{1-\sigma }k_{2}\mathbf { {\textbf{I}}}_{\sigma }^{a}\mathbf {(-}\mu \epsilon _{\mathbf {{\textbf{n}}_{1}} }k_{1}v^{1-\sigma }+v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{1} }}\epsilon _{\mathbf {{\textbf{n}}_{2}}})+v^{1-\sigma }\dfrac{d}{dv} (v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}))^{2}). \end{aligned}$$
\(\mathbf {\spadesuit }\) The energy of normalized \(\Pi \left( {\textbf{t}}\right) ,\Pi \left( {\textbf{n}}_{1}\right) ,\Pi \left( {\textbf{n}} _{2}\right) ,{\textbf{G}}\) magnetic fields for \({\textbf{n}} _{2}-spacelike\) magnetic curve are presented as following
$$\begin{aligned} D_{\sigma }{\mathbb {N}}\Pi \left( {\textbf{t}}\right)= & {} (v^{1-\sigma }k_{1} {\textbf{I}}_{\sigma }^{a}(\gamma k_{1}v^{1-\sigma }+(k_{2}v^{1-\sigma })^{2}) \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(\gamma \epsilon _{\mathbf {{\textbf{n}}_{1}}})) {\textbf{n}}_{1}+(v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}(\gamma k_{1}v^{1-\sigma } \\{} & {} +(k_{2}v^{1-\sigma })^{2})+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}})){\textbf{n}}_{2}, \\ D_{\sigma }{\mathbb {N}}\Pi \left( {\textbf{n}}_{1}\right)= & {} k_{1}v^{1-\sigma }c_{4}{\textbf{n}}_{1}+k_{2}v^{1-\sigma }c_{4}{\textbf{n}}_{2}, \\ D_{\sigma }{\mathbb {N}}\Pi \left( {\textbf{n}}_{2}\right)= & {} k_{1}v^{1-\sigma }c_{5}{\textbf{n}}_{1}+k_{2}v^{1-\sigma }c_{5}{\textbf{n}}_{2}, \\ D_{\sigma }{\mathbb {N}}\textbf{G}= & {} (v^{1-\sigma }k_{1}\mathbf {{\textbf{I}}} _{\sigma }^{a}\mathbf {(-}v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {\textbf{n }_{2}}}\epsilon _{\mathbf {{\textbf{n}}_{1}}} \\{} & {} +v^{1-\sigma }\gamma \epsilon _{\mathbf {{\textbf{n}}_{2}}}k_{2}) -v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}} _{2}}})){\textbf{n}}_{1} \\{} & {} +\mathbf {(}v^{1-\sigma }k_{2}\mathbf {{\textbf{I}}}_{\sigma }^{a}\mathbf {(-} v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}\epsilon _{ \mathbf {{\textbf{n}}_{1}}} \\{} & {} +v^{1-\sigma }\gamma \epsilon _{\mathbf {{\textbf{n}}_{2}}}k_{2}) +v^{1-\sigma }\dfrac{d\gamma }{dv}){\textbf{n}}_{2}, \end{aligned}$$
and we obtain conformable energy
$$\begin{aligned} {\mathbb {E}}({\mathbb {N}}\Pi \left( {\textbf{t}}\right) )= & {} \dfrac{1}{2}{\textbf{I}} _{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}((v^{1-\sigma }k_{1} {\textbf{I}}_{\sigma }^{a}(\gamma k_{1}v^{1-\sigma }+(k_{2}v^{1-\sigma })^{2})+v^{1-\sigma }\dfrac{d}{dv}(\gamma \epsilon _{\mathbf {{\textbf{n}}_{1}} })))^{2} \\{} & {} +\epsilon _{\mathbf {{\textbf{n}}_{2}}}(v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}(\gamma k_{1}v^{1-\sigma }+(k_{2}v^{1-\sigma })^{2})+v^{1-\sigma } \dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}))^{2}) , \\ {\mathbb {E}}({\mathbb {N}}\Pi \left( {\textbf{n}}_{1}\right) )= & {} \dfrac{1}{2}\textbf{I }_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(k_{1}v^{1-\sigma }c_{4})^{2}+\epsilon _{\mathbf {{\textbf{n}}_{2}}}(k_{2}v^{1-\sigma }c_{4})^{2}) , \\ {\mathbb {E}}({\mathbb {N}}\Pi \left( {\textbf{n}}_{2}\right) )= & {} \dfrac{1}{2}\textbf{I }_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(k_{1}v^{1-\sigma }c_{5})^{2}+\epsilon _{\mathbf {{\textbf{n}}_{2}}}(k_{2}v^{1-\sigma }c_{5})^{2}) , \\ {\mathbb {E}}({\mathbb {N}}\mathbf {G)}= & {} \dfrac{1}{2}{\textbf{I}}_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}\mathbf {(}v^{1-\sigma }k_{1} \mathbf {{\textbf{I}}}_{\sigma }^{a}\mathbf {(-}v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}\epsilon _{\mathbf {{\textbf{n}}_{1}}}+v^{1-\sigma }\gamma \epsilon _{\mathbf {{\textbf{n}}_{2}}}k_{2}) \\{} & {} -v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}} _{2}}}))^{2}+\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mathbf {(}v^{1-\sigma }k_{2} \mathbf {{\textbf{I}}}_{\sigma }^{a}\mathbf {(-}v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}\epsilon _{\mathbf {{\textbf{n}}_{1}}}+v^{1-\sigma }\gamma \epsilon _{\mathbf {{\textbf{n}}_{2}}}k_{2})+v^{1-\sigma } \dfrac{d\gamma }{dv})^{2}. \end{aligned}$$

4.2 Conformable energy of recursional electromagnetic fields

In this part, the conformable energy of recursional \(\Pi \left( {\textbf{t}} \right) ,\Pi \left( {\textbf{n}}_{1}\right) ,\Pi \left( {\textbf{n}}_{2}\right) \) and \({\textbf{G}}\) electromagnetic fields are computed.
\(\mathbf {\spadesuit }\) The energy of recursional \(\Pi \left( {\textbf{t}}\right) ,\Pi \left( {\textbf{n}}_{1}\right) ,\Pi \left( {\textbf{n}} _{2}\right) ,{\textbf{G}}\) magnetic fields for \({\textbf{t}}-spacelike\)  magnetic curve are given as following
$$\begin{aligned} D_{\sigma }{\mathcal {R}}\Pi \left( {\textbf{t}}\right)= {} (-v^{1-\sigma }k_{1} {\textbf{I}}_{\sigma }^{a}(-v^{2-2\sigma }k_{1}\dfrac{d}{dv}(v^{1-\sigma }k_{2})+v^{2-2\sigma }k_{2}\dfrac{d}{dv}(v^{1-\sigma }k_{1})) \\{} {} +v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2})\epsilon _{\mathbf {{\textbf{n}}_{1}}})){\textbf{n}}_{1}+(-v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}(-v^{2-2\sigma }k_{1}\dfrac{d}{dv}(v^{1-\sigma }k_{2}) \\{} {} +v^{2-2\sigma }k_{2}\dfrac{d}{dv}(v^{1-\sigma }k_{1}))-v^{1-\sigma }\dfrac{d }{dv}(v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1})\epsilon _{\mathbf { {\textbf{n}}_{2}}})){\textbf{n}}_{2}, \\ D_{\sigma }{\mathcal {R}}\Pi \left( {\textbf{n}}_{1}\right)= {} (k_{1}v^{1-\sigma } {\textbf{I}}_{\sigma }^{a}(k_{1}(v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{ \mathbf {{\textbf{n}}_{2}}})-\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{2-2\sigma }k_{1}k_{2})+v^{3-3\sigma }k_{2}k_{1}^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}} \\{} {} +v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{ \mathbf {{\textbf{n}}_{2}}})-\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{2-2\sigma }k_{1}k_{2})){\textbf{n}}_{1}+(k_{2}v^{1-\sigma }{\textbf{I}}_{\sigma }^{a}(k_{1}(v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{2} }}) \\{} {} -\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{2-2\sigma }k_{1}k_{2})+v^{3-3\sigma }k_{2}k_{1}^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}})+v^{1-\sigma }\dfrac{d}{dv }((v^{1-\sigma }k_{1})^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\epsilon _{ \mathbf {{\textbf{n}}_{2}}})){\textbf{n}}_{2}, \\ D_{\sigma }{\mathcal {R}}\Pi \left( {\textbf{n}}_{2}\right)= {} -(v^{1-\sigma }k_{1} {\textbf{I}}_{\sigma }^{a}(v^{3-3\sigma }k_{1}k_{2}{}^{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}+v^{1-\sigma }k_{2}(v^{2-2\sigma }k_{1}k_{2}\epsilon _{ \mathbf {{\textbf{n}}_{2}}}+v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf { {\textbf{n}}_{1}}})) \\+v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}}}(v^{1-\sigma }k_{2})^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}})){\textbf{n}}_{1}-( k_{2}v^{1-\sigma }{\textbf{I}}_{\sigma }^{a}(v^{3-3\sigma }k_{1}k_{2}{}^{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}+v^{1-\sigma }k_{2}(v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}} \\{} {} +v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{1}} }))+v^{1-\sigma }\dfrac{d}{dv}((v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}+v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {\textbf{n }_{1}}}))\epsilon _{\mathbf {{\textbf{n}}_{2}}}){\textbf{n}}_{2}, \\ D_{\sigma }{\mathcal {R}}\textbf{G}= {} (v^{1-\sigma }k_{1}{\textbf{I}}_{\sigma }^{a}(-v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\mathbf {(}\rho v^{1-\sigma }k_{2}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{ \mathbf {{\textbf{n}}_{1}}}\mathbf {))+}v^{1-\sigma }k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}\mathbf {(}\rho v^{1-\sigma }k_{1} \\{} {} -v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}}}v^{1-\sigma }k_{2}\mathbf {))+}v^{1-\sigma }\dfrac{d}{dv}(\rho v^{1-\sigma }k_{2}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf { {\textbf{n}}_{1}}})\mathbf {\mathbf {)})n}_{1} \\{} {} +\mathbf {(}v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}(-v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\mathbf {(}\rho v^{1-\sigma }k_{2}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf { {\textbf{n}}_{1}}}\mathbf {))+}v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}} _{2}}}\mathbf {(}\rho v^{1-\sigma }k_{1} \\{} {} -v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}}}v^{1-\sigma }k_{2}\mathbf {))-}v^{1-\sigma }\dfrac{d}{dv}\mathbf {(}\rho v^{1-\sigma }k_{1}-v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}} }v^{1-\sigma }k_{2}\mathbf {)))n}_{2}, \end{aligned}$$
moreover, we have conformable energy
$$\begin{aligned} {\mathbb {E}}({\mathcal {R}}\Pi \left( {\textbf{t}}\right) )= & {} \dfrac{1}{2}{\textbf{I}} _{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(-v^{1-\sigma }k_{1} {\textbf{I}}_{\sigma }^{a}(-v^{2-2\sigma }k_{1}\dfrac{d}{dv}(v^{1-\sigma }k_{2})+v^{2-2\sigma }k_{2}\dfrac{d}{dv}(v^{1-\sigma }k_{1})) \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2})\epsilon _{\mathbf {{\textbf{n}}_{1}}}))^{2}+\epsilon _{\mathbf {\textbf{n }_{2}}}(-v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}(-v^{2-2\sigma }k_{1} \dfrac{d}{dv}(v^{1-\sigma }k_{2}) \\{} & {} +v^{2-2\sigma }k_{2}\dfrac{d}{dv}(v^{1-\sigma }k_{1}))-v^{1-\sigma }\dfrac{d }{dv}(v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1})\epsilon _{\mathbf { {\textbf{n}}_{2}}}))^{2}), \\ {\mathbb {E}}({\mathcal {R}}\Pi \left( {\textbf{n}}_{1}\right) )= & {} \dfrac{1}{2}\textbf{ I}_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}((k_{1}v^{1-\sigma } {\textbf{I}}_{\sigma }^{a}(k_{1}(v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{ \mathbf {{\textbf{n}}_{2}}})-\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{2-2\sigma }k_{1}k_{2}) \\{} & {} +v^{3-3\sigma }k_{2}k_{1}^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}} _{2}}})-\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{2-2\sigma }k_{1}k_{2}))^{2}+\epsilon _{\mathbf {{\textbf{n}}_{2}}}((k_{2}v^{1-\sigma } {\textbf{I}}_{\sigma }^{a}(k_{1}(v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{ \mathbf {{\textbf{n}}_{2}}}) \\{} & {} -\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{2-2\sigma }k_{1}k_{2})+v^{3-3\sigma }k_{2}k_{1}^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}})+v^{1-\sigma }\dfrac{d}{dv }((v^{1-\sigma }k_{1})^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\epsilon _{ \mathbf {{\textbf{n}}_{2}}}))^{2}), \\ {\mathbb {E}}({\mathcal {R}}\Pi \left( {\textbf{n}}_{2}\right) )= & {} \dfrac{1}{2}\textbf{ I}_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(v^{1-\sigma }k_{1} {\textbf{I}}_{\sigma }^{a}(v^{3-3\sigma }k_{1}k_{2}{}^{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}+v^{1-\sigma }k_{2}(v^{2-2\sigma }k_{1}k_{2}\epsilon _{ \mathbf {{\textbf{n}}_{2}}} \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{1}} }))+v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}} }(v^{1-\sigma }k_{2})^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}})^{2}+\epsilon _{ \mathbf {{\textbf{n}}_{2}}}(\mathcal {(}k_{2}v^{1-\sigma }{\textbf{I}}_{\sigma }^{a}(v^{3-3\sigma }k_{1}k_{2}{}^{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}} \\{} & {} +v^{1-\sigma }k_{2}(v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2} }}+v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {{\textbf{n}}_{1}} }))+v^{1-\sigma }\dfrac{d}{dv}((v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}+v^{1-\sigma }\dfrac{d}{dv}(\rho \epsilon _{\mathbf {\textbf{n }_{1}}}))\epsilon _{\mathbf {{\textbf{n}}_{2}}})^{2}), \\ {\mathbb {E}}({\mathcal {R}}\textbf{G})= & {} \dfrac{1}{2}{\textbf{I}}_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(v^{1-\sigma }k_{1}{\textbf{I}} _{\sigma }^{a}(-v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\mathbf { (}\rho v^{1-\sigma }k_{2}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}})) \\{} & {} +v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mathbf {(} \rho v^{1-\sigma }k_{1}-v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf { {\textbf{n}}_{2}}}v^{1-\sigma }k_{2}))+v^{1-\sigma }\dfrac{d}{dv} (\rho v^{1-\sigma }k_{2}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}})))^{2} \\{} & {} +\epsilon _{\mathbf {{\textbf{n}}_{2}}}(v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}(-v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\mathbf {(}\rho v^{1-\sigma }k_{2}+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{ \mathbf {{\textbf{n}}_{1}}}))+v^{1-\sigma }k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}\mathbf {(}\rho v^{1-\sigma }k_{1} \\{} & {} -v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}}}v^{1-\sigma }k_{2}))-v^{1-\sigma }\dfrac{d}{dv}\mathbf {(}\rho v^{1-\sigma }k_{1}-v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}} }v^{1-\sigma }k_{2})))^{2}). \end{aligned}$$
\(\mathbf {\spadesuit }\) The energy of recursional \(\Pi \left( {\textbf{t}}\right) ,\Pi \left( {\textbf{n}}_{1}\right) ,\Pi \left( {\textbf{n}}_{2}\right) ,{\textbf{G}}\) magnetic fields for \({\textbf{n}} _{1}-spacelike\) magnetic curve are presented as following
$$\begin{aligned} D_{\sigma }{\mathcal {R}}\Pi \left( {\textbf{t}}\right)= {} (-v^{1-\sigma }k_{1} \mathbf {{\textbf{I}}}_{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mu )+k_{2}v^{2-2\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}})) \\{} {} +v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf { {\textbf{n}}_{2}}}\mu )\epsilon _{\mathbf {{\textbf{n}}_{1}}})){\textbf{n}} _{1}+(-v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}(-v^{2-2\sigma }k_{1}\dfrac{ d}{dv}(v^{1-\sigma }k_{2}) \\{} {} +v^{2-2\sigma }k_{2}\dfrac{d}{dv}(v^{1-\sigma }k_{1}))-v^{1-\sigma }\dfrac{d }{dv}(v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf { {\textbf{n}}_{1}}})\epsilon _{\mathbf {{\textbf{n}}_{2}}})){\textbf{n}}_{2}, \\ D_{\sigma }{\mathcal {R}}\Pi \left( {\textbf{n}}_{1}\right)= {} (v^{1-\sigma }\dfrac{ d}{dv}(v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}\epsilon _{ \mathbf {{\textbf{n}}_{1}}}-k_{1}v^{1-\sigma }\mathbf {{\textbf{I}}}_{\sigma }^{a}(v^{2-2\sigma }k_{1}^{2}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}} }-v^{2-2\sigma }k_{1}^{2}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}})))\textbf{n}_{1} \\{} {} +(-k_{2}v^{1-\sigma }\mathbf {{\textbf{I}}}_{\sigma }^{a}(v^{2-2\sigma }k_{1}^{2}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}-v^{2-2\sigma }k_{1}^{2}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}})+v^{1-\sigma }\dfrac{d}{dv }(v^{2-2\sigma }k_{1}^{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}\epsilon _{ \mathbf {{\textbf{n}}_{2}}})){\textbf{n}}_{2}, \\ D_{\sigma }{\mathcal {R}}\Pi \left( {\textbf{n}}_{2}\right)= {} (v^{1-\sigma }k_{1}c_{3}-v^{1-\sigma }\dfrac{d}{dv}(\mu v^{1-\sigma }k_{2}\epsilon _{ \mathbf {{\textbf{n}}_{1}}})){\textbf{n}}_{1}+(v^{1-\sigma }k_{2}c_{3}+v^{1-\sigma }\dfrac{d}{dv}(\mu k_{1}v^{1-\sigma }\epsilon _{ \mathbf {{\textbf{n}}_{2}}}){\textbf{n}}_{2}, \\ D_{\sigma }{\mathcal {R}}\textbf{G}= {} (-v^{1-\sigma }k_{1}\mathbf {{\textbf{I}}} _{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{dv}(k_{1}\epsilon _{\mathbf { {\textbf{n}}_{1}}}v^{1-\sigma })-v^{2-2\sigma }k_{2}\dfrac{d\mu }{dv})\mathbf {+ }v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d}{dv}(k_{1}\epsilon _{ \mathbf {{\textbf{n}}_{1}}}v^{1-\sigma })))\textbf{n}_{1} \\{} {} +\mathbf {(-}v^{1-\sigma }k_{2}\mathbf {{\textbf{I}}}_{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{dv}(k_{1}\epsilon _{\mathbf {{\textbf{n}} _{1}}}v^{1-\sigma })-v^{2-2\sigma }k_{2}\dfrac{d\mu }{dv})+ v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d\mu }{dv}\epsilon _{\mathbf { {\textbf{n}}_{2}}})){\textbf{n}}_{2}, \end{aligned}$$
moreover, we have conformable energy
$$\begin{aligned} {\mathbb {E}}({\mathcal {R}}\Pi \left( {\textbf{t}}\right) )= & {} \dfrac{1}{2}{\textbf{I}} _{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(-v^{1-\sigma }k_{1} \mathbf {{\textbf{I}}}_{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{dv}(\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mu ) \\{} & {} +k_{2}v^{2-2\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf { {\textbf{n}}_{1}}}))+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d}{dv} (\epsilon _{\mathbf {{\textbf{n}}_{2}}}\mu )\epsilon _{\mathbf {{\textbf{n}}_{1}} }))^{2} \\{} & {} +\epsilon _{\mathbf {{\textbf{n}}_{2}}}(-v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}(-v^{2-2\sigma }k_{1}\dfrac{d}{dv}(v^{1-\sigma }k_{2})+v^{2-2\sigma }k_{2}\dfrac{d}{dv}(v^{1-\sigma }k_{1})) \\{} & {} -v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}})\epsilon _{\mathbf {{\textbf{n}}_{2}} }))^{2}), \\ {\mathbb {E}}({\mathcal {R}}\Pi \left( {\textbf{n}}_{1}\right) )= & {} \dfrac{1}{2}\textbf{ I}_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(-k_{1}v^{1-\sigma } \mathbf {{\textbf{I}}}_{\sigma }^{a}(v^{2-2\sigma }k_{1}^{2}k_{2}\epsilon _{ \mathbf {{\textbf{n}}_{2}}} \\{} & {} -v^{2-2\sigma }k_{1}^{2}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{1}} })+v^{1-\sigma }\dfrac{d}{dv}(v^{2-2\sigma }k_{1}k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}\epsilon _{\mathbf {{\textbf{n}}_{1}}}))^{2} \\{} & {} +\epsilon _{\mathbf {{\textbf{n}}_{2}}}(-k_{2}v^{1-\sigma }\mathbf {{\textbf{I}}} _{\sigma }^{a}(v^{2-2\sigma }k_{1}^{2}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}} }-v^{2-2\sigma }k_{1}^{2}k_{2}\epsilon _{\mathbf {{\textbf{n}}_{1}}}) \\{} & {} +v^{1-\sigma }\dfrac{d}{dv}(v^{2-2\sigma }k_{1}^{2}\epsilon _{\mathbf { {\textbf{n}}_{1}}}\epsilon _{\mathbf {{\textbf{n}}_{2}}}))^{2}), \\ {\mathbb {E}}({\mathcal {R}}\Pi \left( {\textbf{n}}_{2}\right) )= & {} \dfrac{1}{2}\textbf{ I}_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(v^{1-\sigma }k_{1}c_{3}-v^{1-\sigma }\dfrac{d}{dv}(\mu v^{1-\sigma }k_{2}\epsilon _{ \mathbf {{\textbf{n}}_{1}}})^{2} \\{} & {} +\epsilon _{\mathbf {{\textbf{n}}_{2}}}(v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma } \dfrac{d}{dv}(k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{1-\sigma })))^{2}) , \\ {\mathbb {E}}({\mathcal {R}}\textbf{G})= & {} \dfrac{1}{2}{\textbf{I}}_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(-v^{1-\sigma }k_{1} \mathbf {{\textbf{I}}}_{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{dv} (k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}}}v^{1-\sigma }) \\{} & {} -v^{2-2\sigma }k_{2}\dfrac{d\mu }{dv})+v^{1-\sigma }\dfrac{d}{dv} (v^{1-\sigma }\dfrac{d}{dv}(k_{1}\epsilon _{\mathbf {{\textbf{n}}_{1}} }v^{1-\sigma })))^{2} \\{} & {} +\epsilon _{\mathbf {{\textbf{n}}_{2}}}(-v^{1-\sigma }k_{2}\mathbf { {\textbf{I}}}_{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{dv}(k_{1}\epsilon _{ \mathbf {{\textbf{n}}_{1}}}v^{1-\sigma }) \\{} & {} -v^{2-2\sigma }k_{2}\dfrac{d\mu }{dv})+v^{1-\sigma }\dfrac{d}{dv} (v^{1-\sigma }\dfrac{d\mu }{dv}\epsilon _{\mathbf {{\textbf{n}}_{2}}}))^{2}). \end{aligned}$$
\(\mathbf {\spadesuit }\) The energy of recursional \(\Pi \left( {\textbf{t}}\right) ,\Pi \left( {\textbf{n}}_{1}\right) ,\Pi \left( {\textbf{n}} _{2}\right) ,{\textbf{G}}\) magnetic fields for \({\textbf{n}} _{2}-spacelike\) magnetic curve are given as following
$$\begin{aligned} D_{\sigma }{\mathcal {R}}\Pi \left( {\textbf{t}}\right)= & {} (-v^{1-\sigma }k_{1} {\textbf{I}}_{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}) \\{} & {} +k_{2}v^{2-2\sigma }\dfrac{d}{dv}(\gamma \epsilon _{\mathbf {{\textbf{n}}_{1}} }))+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}})\epsilon _{\mathbf {{\textbf{n}}_{1}} })){\textbf{n}}_{1} \\{} & {} +(-v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{ dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}})+k_{2}v^{2-2\sigma }\dfrac{d}{dv}(\gamma \epsilon _{\mathbf {{\textbf{n}}_{1}}})) \\{} & {} -v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d }{dv}(\gamma \epsilon _{\mathbf {{\textbf{n}}_{1}}})\epsilon _{\mathbf {\textbf{n }_{2}}})){\textbf{n}}_{2}, \\ D_{\sigma }{\mathcal {R}}\Pi \left( {\textbf{n}}_{1}\right)= & {} (v^{1-\sigma }k_{1}c_{6}-v^{1-\sigma }\dfrac{d}{dv}(\gamma k_{2}v^{1-\sigma }\epsilon _{ \mathbf {{\textbf{n}}_{1}}})){\textbf{n}}_{1} \\{} & {} +(v^{1-\sigma }k_{2}c_{6}+v^{1-\sigma }\dfrac{d}{dv}(\gamma k_{1}v^{1-\sigma }\epsilon _{\mathbf {{\textbf{n}}_{2}}}){\textbf{n}}_{2}, \\ D_{\sigma }{\mathcal {R}}\Pi \left( {\textbf{n}}_{2}\right)= & {} (v^{1-\sigma }k_{1}c_{7}-v^{1-\sigma }\dfrac{d}{dv}(v^{2-2\sigma }k_{2}^{2}\epsilon _{ \mathbf {{\textbf{n}}_{2}}}\epsilon _{\mathbf {{\textbf{n}}_{1}}})){\textbf{n}}_{1} \\{} & {} +(v^{1-\sigma }k_{2}c_{7}+v^{1-\sigma }\dfrac{d}{dv}(v^{2-2\sigma }k_{2}k_{1}){\textbf{n}}_{2}, \\ D_{\sigma }{\mathcal {R}}\textbf{G}= & {} (-v^{1-\sigma }k_{1}{\textbf{I}}_{\sigma }^{a}(\dfrac{d\gamma }{dv}v^{2-2\sigma }k_{1}-v^{2-2\sigma }k_{2}\dfrac{d}{dv }(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}})) \\{} & {} -v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d\gamma }{dv} \epsilon _{\mathbf {{\textbf{n}}_{1}}})))\textbf{n}_{1}+\mathbf {(-}v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}(\dfrac{d\gamma }{dv}v^{2-2\sigma }k_{1} \\{} & {} -v^{2-2\sigma }k_{2}\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}))+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d }{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}})\epsilon _{ \mathbf {{\textbf{n}}_{2}}})){\textbf{n}}_{2}, \end{aligned}$$
and we obtain conformable energy
$$\begin{aligned} {\mathbb {E}}({\mathcal {R}}\Pi \left( {\textbf{t}}\right) )= & {} \dfrac{1}{2}{\textbf{I}} _{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(-v^{1-\sigma }k_{1} {\textbf{I}}_{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}}) \\{} & {} +k_{2}v^{2-2\sigma }\dfrac{d}{dv}(\gamma \epsilon _{\mathbf {{\textbf{n}}_{1}} }))+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}})\epsilon _{\mathbf {{\textbf{n}}_{1}} }))^{2} \\{} & {} +\epsilon _{\mathbf {{\textbf{n}}_{2}}}(-v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}(-k_{1}v^{2-2\sigma }\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}})+k_{2}v^{2-2\sigma }\dfrac{d}{dv}(\gamma \epsilon _{\mathbf { {\textbf{n}}_{1}}})) \\{} & {} -v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d }{dv}(\gamma \epsilon _{\mathbf {{\textbf{n}}_{1}}})\epsilon _{\mathbf {\textbf{n }_{2}}}))^{2}), \\ {\mathbb {E}}({\mathcal {R}}\Pi \left( {\textbf{n}}_{1}\right) )= & {} \dfrac{1}{2}\textbf{ I}_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(v^{1-\sigma }k_{1}c_{6}-v^{1-\sigma }\dfrac{d}{dv}(\gamma k_{2}v^{1-\sigma }\epsilon _{ \mathbf {{\textbf{n}}_{1}}}))^{2} \\{} & {} +\epsilon _{\mathbf {{\textbf{n}}_{2}}}(v^{1-\sigma }k_{2}c_{6}+v^{1-\sigma } \dfrac{d}{dv}(\gamma k_{1}v^{1-\sigma }\epsilon _{\mathbf {{\textbf{n}}_{2}} })^{2}), \\ {\mathbb {E}}({\mathcal {R}}\Pi \left( {\textbf{n}}_{2}\right) )= & {} \dfrac{1}{2}\textbf{ I}_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(v^{1-\sigma }k_{1}c_{7}-v^{1-\sigma }\dfrac{d}{dv}(v^{2-2\sigma }k_{2}^{2}\epsilon _{ \mathbf {{\textbf{n}}_{2}}}\epsilon _{\mathbf {{\textbf{n}}_{1}}}))^{2} \\{} & {} +\epsilon _{\mathbf {{\textbf{n}}_{2}}}(v^{1-\sigma }k_{2}c_{7}+v^{1-\sigma } \dfrac{d}{dv}(v^{2-2\sigma }k_{2}k_{1})^{2}), \\ {\mathbb {E}}({\mathcal {R}}\textbf{G})= & {} \dfrac{1}{2}{\textbf{I}}_{\sigma }^{a}(1+\epsilon _{\mathbf {{\textbf{n}}_{1}}}(-v^{1-\sigma }k_{1} {\textbf{I}}_{\sigma }^{a}(\dfrac{d\gamma }{dv}v^{2-2\sigma }k_{1}-v^{2-2\sigma }k_{2}\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}})) \\{} & {} -v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d\gamma }{dv} \epsilon _{\mathbf {{\textbf{n}}_{1}}})))^{2}+\epsilon _{\mathbf {{\textbf{n}}_{2}} }(-v^{1-\sigma }k_{2}{\textbf{I}}_{\sigma }^{a}(\dfrac{d\gamma }{dv} v^{2-2\sigma }k_{1} \\{} & {} -v^{2-2\sigma }k_{2}\dfrac{d}{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf { {\textbf{n}}_{2}}}))+v^{1-\sigma }\dfrac{d}{dv}(v^{1-\sigma }\dfrac{d }{dv}(v^{1-\sigma }k_{2}\epsilon _{\mathbf {{\textbf{n}}_{2}}})\epsilon _{ \mathbf {{\textbf{n}}_{2}}})^{2}). \end{aligned}$$
The application of recursional \(\Pi \left( {\textbf{t}}\right) ,\Pi \left( {\textbf{n}}_{1}\right) ,\Pi \left( {\textbf{n}}_{2}\right) \) enegies of the system can be evaluated with different volume fractions for different conformable permeability. The evaluation of energy is based in heat conformable transfer and potential of friction with viscosity and thermal conformable \(\Pi \left( {\textbf{t}}\right) ,\Pi \left( {\textbf{n}}_{1}\right) ,\Pi \left( {\textbf{n}}_{2}\right) \) conductivity in Figs. 1, 2 and 3.

5 Conclusions

In this paper, we have investigated spacelike magnetic curves according to Bishop frame. Firstly, we have presented conformable derivatives of Lorentz magnetic fields of these magnetic curves. Moreover, we have calculated the conformable derivatives of the normalization and recursional electromagnetic vector fields. Finally, we obtain conformable energy of the normalization and recursional operators for these electromagnetic fields associated with Bishop frame.

Declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The contents of this manuscript have not been copyrighted or published previously; The contents of this manuscript are not now under consideration for publication elsewhere.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
go back to reference Bukcu, B., Karacan, M.K.: Special Bishop motion and Bishop Darboux rotation axis of the space curve. J. Dyn. Syst. Geom. Theories 6(1), 27–34 (2008)MathSciNetCrossRef Bukcu, B., Karacan, M.K.: Special Bishop motion and Bishop Darboux rotation axis of the space curve. J. Dyn. Syst. Geom. Theories 6(1), 27–34 (2008)MathSciNetCrossRef
go back to reference Bükcü, B., Karacan, M.K.: The slant helices according to Bishop frame. Int. J. Comput. Math. Sci. 3(2), 67–70 (2009a)MathSciNet Bükcü, B., Karacan, M.K.: The slant helices according to Bishop frame. Int. J. Comput. Math. Sci. 3(2), 67–70 (2009a)MathSciNet
go back to reference Bükcü, B., Karacan, M.K.: Bishop motion and Bishop Darboux rotation axis of the timelike curve in Minkowski 3-space, Kochi J. Math 4, 109–117 (2009b) Bükcü, B., Karacan, M.K.: Bishop motion and Bishop Darboux rotation axis of the timelike curve in Minkowski 3-space, Kochi J. Math 4, 109–117 (2009b)
go back to reference do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs (1976) do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs (1976)
go back to reference Karacan, M.K., Bukcu, B.: An alternative moving frame for tubular surfaces around timelike curves in the Minkowski 3-space. Balkan J. Geom. Appl. 12(2) (2007a) Karacan, M.K., Bukcu, B.: An alternative moving frame for tubular surfaces around timelike curves in the Minkowski 3-space. Balkan J. Geom. Appl. 12(2) (2007a)
go back to reference Karacan, K.M., Bukcu, B.: An alternative moving frame for tubular surface around the spacelike curve with a spacelike binormal in Minkowski 3-space. Math. Morav. 11, 47–54 (2007b)MathSciNetCrossRef Karacan, K.M., Bukcu, B.: An alternative moving frame for tubular surface around the spacelike curve with a spacelike binormal in Minkowski 3-space. Math. Morav. 11, 47–54 (2007b)MathSciNetCrossRef
go back to reference Karacan, M.K., Bukcu, B.: An alternative moving frame for a tubular surface around a spacelike curve with a spacelike normal in Minkowski 3-space. Rend. Circ. Mat. Palermo 57, 193–201 (2008)MathSciNetCrossRef Karacan, M.K., Bukcu, B.: An alternative moving frame for a tubular surface around a spacelike curve with a spacelike normal in Minkowski 3-space. Rend. Circ. Mat. Palermo 57, 193–201 (2008)MathSciNetCrossRef
go back to reference Körpinar, T.: New characterizations for minimizing energy of biharmonic particles in Heisenberg spacetime. Int. J. Theor. Phys. 53, 3208–3218 (2014)MathSciNetCrossRef Körpinar, T.: New characterizations for minimizing energy of biharmonic particles in Heisenberg spacetime. Int. J. Theor. Phys. 53, 3208–3218 (2014)MathSciNetCrossRef
go back to reference Körpinar, T.: On T-magnetic biharmonic particles with energy and angle in the three dimensional Heisenberg group H. Adv. Appl. Clifford Algebras 28(1), 9 (2018)MathSciNetCrossRef Körpinar, T.: On T-magnetic biharmonic particles with energy and angle in the three dimensional Heisenberg group H. Adv. Appl. Clifford Algebras 28(1), 9 (2018)MathSciNetCrossRef
go back to reference Körpinar, T., Demirkol, R.C.: A new characterization on the energy of elastica with the energy of Bishop vector fields in Minkowski space. J. Adv. Phys. 6(4), 562–569 (2017)CrossRef Körpinar, T., Demirkol, R.C.: A new characterization on the energy of elastica with the energy of Bishop vector fields in Minkowski space. J. Adv. Phys. 6(4), 562–569 (2017)CrossRef
go back to reference Körpinar, T., Demirkol, R.C.: A new approach on the energy of elastica and non-elastica in Minkowski space E 2 4. Bull. Braz. Math. Soc. New Ser. 49(1), 159–177 (2018)MathSciNetCrossRef Körpinar, T., Demirkol, R.C.: A new approach on the energy of elastica and non-elastica in Minkowski space E 2 4. Bull. Braz. Math. Soc. New Ser. 49(1), 159–177 (2018)MathSciNetCrossRef
go back to reference Körpinar, T., Körpinar, Z.: Optical spherical Ss-electric and magnetic phase with fractional q-HATM approach. Optik 243, 167274 (2021a)CrossRefADS Körpinar, T., Körpinar, Z.: Optical spherical Ss-electric and magnetic phase with fractional q-HATM approach. Optik 243, 167274 (2021a)CrossRefADS
go back to reference Körpinar, T., Körpinar, Z.: New version of optical spherical electric and magnetic flow phase with some fractional solutions in SH32. Optik 243, 167378 (2021b)CrossRefADS Körpinar, T., Körpinar, Z.: New version of optical spherical electric and magnetic flow phase with some fractional solutions in SH32. Optik 243, 167378 (2021b)CrossRefADS
go back to reference Körpinar, T., Turhan, E.: Constant energy of time involute particles of biharmonic particles in Bianchi type-I cosmological model spacetime. Int. J. Theor. Phys. 54, 1654–1660 (2015)CrossRef Körpinar, T., Turhan, E.: Constant energy of time involute particles of biharmonic particles in Bianchi type-I cosmological model spacetime. Int. J. Theor. Phys. 54, 1654–1660 (2015)CrossRef
go back to reference Körpınar, T., Demirkol, R.C., Körpınar, Z.: Magnetic helicity and electromagnetic vortex filament flows under the influence of Lorentz force in MHD. Optik 242, 167302 (2021a)CrossRefADS Körpınar, T., Demirkol, R.C., Körpınar, Z.: Magnetic helicity and electromagnetic vortex filament flows under the influence of Lorentz force in MHD. Optik 242, 167302 (2021a)CrossRefADS
go back to reference Körpınar, T., Demirkol, R.C., Körpınar, Z.: New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction. Phys. Scr. 96(8), 085219 (2021b)CrossRefADS Körpınar, T., Demirkol, R.C., Körpınar, Z.: New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction. Phys. Scr. 96(8), 085219 (2021b)CrossRefADS
go back to reference Körpınar, T., Körpınar, Z., Yeneroğlu, M.: Optical energy of spherical velocity with optical magnetic density in Heisenberg sphere space \({\mathbb{S} }_{Heis^{3}}^{2}\). Optik 247, 167937 (2021c)CrossRefADS Körpınar, T., Körpınar, Z., Yeneroğlu, M.: Optical energy of spherical velocity with optical magnetic density in Heisenberg sphere space \({\mathbb{S} }_{Heis^{3}}^{2}\). Optik 247, 167937 (2021c)CrossRefADS
go back to reference Maluf, J.W., Faria, F.F.: On the construction of Fermi–Walker transported frames. Ann. Phys. 17(5), 326–335 (2008)MathSciNetCrossRef Maluf, J.W., Faria, F.F.: On the construction of Fermi–Walker transported frames. Ann. Phys. 17(5), 326–335 (2008)MathSciNetCrossRef
Metadata
Title
Conformable modeling of normalization and recursional electromagnetic fields of spacelike magnetic curves
Authors
Talat Körpinar
Zeliha Körpinar
Hatice Özdemir
Publication date
01-05-2024
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 5/2024
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-024-06579-1

Other articles of this Issue 5/2024

Optical and Quantum Electronics 5/2024 Go to the issue