Skip to main content
Top
Published in: Designs, Codes and Cryptography 1/2016

01-07-2016

Constructions of complex equiangular lines from mutually unbiased bases

Authors: Jonathan Jedwab, Amy Wiebe

Published in: Designs, Codes and Cryptography | Issue 1/2016

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A set of vectors of equal norm in \(\mathbb {C}^d\) represents equiangular lines if the magnitudes of the Hermitian inner product of every pair of distinct vectors in the set are equal. The maximum size of such a set is \(d^2\), and it is conjectured that sets of this maximum size exist in \(\mathbb {C}^d\) for every \(d \ge 2\). We take a combinatorial approach to this conjecture, using mutually unbiased bases (MUBs) in the following three constructions of equiangular lines:
(1)
adapting a set of \(d\) MUBs in \(\mathbb {C}^d\) to obtain \(d^2\) equiangular lines in \(\mathbb {C}^d\),
 
(2)
using a set of \(d\) MUBs in \(\mathbb {C}^d\) to build \((2d)^2\) equiangular lines in \(\mathbb {C}^{2d}\),
 
(3)
combining two copies of a set of \(d\) MUBs in \(\mathbb {C}^d\) to build \((2d)^2\) equiangular lines in \(\mathbb {C}^{2d}\).
 
For each construction, we give the dimensions \(d\) for which we currently know that the construction produces a maximum-sized set of equiangular lines.
Footnotes
1
A function \(f\) from \(\mathbb {N}\) to \(\mathbb {R}^+\) is \(\Theta (d^2)\) if there are positive constants \(c\) and \(C\), independent of \(d\), for which \(c d^2 \le f(d) \le C d^2\) for all sufficiently large \(d\).
 
Literature
1.
go back to reference Appleby D.M.: Symmetric informationally complete-positive operator valued measures and the extended Clifford group. J. Math. Phys. 46(5), 052107 (29 pages) (2005). Appleby D.M.: Symmetric informationally complete-positive operator valued measures and the extended Clifford group. J. Math. Phys. 46(5), 052107 (29 pages) (2005).
2.
go back to reference Appleby D.M.: SIC-POVMS and MUBS: geometrical relationships in prime dimension. In: Foundations of Probability and Physics—5, volume 1101 of AIP Conference Proceedings, pp. 223–232. American Institute of Physics, New York (2009). Appleby D.M.: SIC-POVMS and MUBS: geometrical relationships in prime dimension. In: Foundations of Probability and Physics—5, volume 1101 of AIP Conference Proceedings, pp. 223–232. American Institute of Physics, New York (2009).
4.
go back to reference Appleby D.M., Bengtsson I., Brierley S., Ericsson Å., Grassl M., Larsson J.-Å.: Systems of imprimitivity for the Clifford group. Quantum Inf. Comput. 14(3–4), 339–360 (2014). Appleby D.M., Bengtsson I., Brierley S., Ericsson Å., Grassl M., Larsson J.-Å.: Systems of imprimitivity for the Clifford group. Quantum Inf. Comput. 14(3–4), 339–360 (2014).
5.
go back to reference Appleby D.M., Bengtsson I., Brierley S., Grassl M., Gross D., Larsson J.-Å.: The monomial representations of the Clifford group. Quantum Inf. Comput. 12(5–6), 404–431 (2012). Appleby D.M., Bengtsson I., Brierley S., Grassl M., Gross D., Larsson J.-Å.: The monomial representations of the Clifford group. Quantum Inf. Comput. 12(5–6), 404–431 (2012).
6.
go back to reference Bandyopadhyay S., Boykin P.O., Roychowdhury V., Vatan F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34(4), 512–528 (2002). Bandyopadhyay S., Boykin P.O., Roychowdhury V., Vatan F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34(4), 512–528 (2002).
7.
go back to reference Belovs A.: Welch bounds and quantum state tomography. Master’s thesis, University of Waterloo (2008). Belovs A.: Welch bounds and quantum state tomography. Master’s thesis, University of Waterloo (2008).
8.
go back to reference Beneduci R., Bullock T.J., Busch P., Carmeli C., Heinosaari T., Toigo A.: Operational link between mutually unbiased bases and symmetric informationally complete positive operator-valued measures. Phys. Rev. A 88, 032312 (15 pages) (2013). Beneduci R., Bullock T.J., Busch P., Carmeli C., Heinosaari T., Toigo A.: Operational link between mutually unbiased bases and symmetric informationally complete positive operator-valued measures. Phys. Rev. A 88, 032312 (15 pages) (2013).
9.
go back to reference Bengtsson I.: Three ways to look at mutually unbiased bases. In: Foundations of Probability and Physics—4, volume 889 of AIP Conference Proceedings, pp. 40–51. American Institute of Physics, New York (2007). Bengtsson I.: Three ways to look at mutually unbiased bases. In: Foundations of Probability and Physics—4, volume 889 of AIP Conference Proceedings, pp. 40–51. American Institute of Physics, New York (2007).
10.
go back to reference Bengtsson I.: From SICs and MUBs to Eddington. J. Phys. Conf. Ser., 254, 012007 (12 pages) (2010). Bengtsson I.: From SICs and MUBs to Eddington. J. Phys. Conf. Ser., 254, 012007 (12 pages) (2010).
11.
go back to reference Bengtsson I., Blanchfield K., Cabello A.: A Kochen-Specker inequality from a SIC. Phys. Lett. A 376(4), 374–376 (2012). Bengtsson I., Blanchfield K., Cabello A.: A Kochen-Specker inequality from a SIC. Phys. Lett. A 376(4), 374–376 (2012).
12.
go back to reference de Caen D.: Large equiangular sets of lines in Euclidean space. Electron. J. Comb. 7, #R55 (3 pages) (2000). de Caen D.: Large equiangular sets of lines in Euclidean space. Electron. J. Comb. 7, #R55 (3 pages) (2000).
13.
go back to reference Delsarte P., Goethals J.M., Seidel J.J.: Bounds for systems of lines, and Jacobi polynomials. Philips Res. Rep. 30, 91–105 (1975). Delsarte P., Goethals J.M., Seidel J.J.: Bounds for systems of lines, and Jacobi polynomials. Philips Res. Rep. 30, 91–105 (1975).
15.
go back to reference Godsil C., Roy A.: Equiangular lines, mutually unbiased bases, and spin models. Eur. J. Comb. 30(1), 246–262 (2009). Godsil C., Roy A.: Equiangular lines, mutually unbiased bases, and spin models. Eur. J. Comb. 30(1), 246–262 (2009).
16.
go back to reference Grassl M.: On SIC-POVMs and MUBs in dimension 6. In: Proceedings ERATO Conference on Quantum Information Science 2004, Tokyo, pp. 60–61 (2004). Grassl M.: On SIC-POVMs and MUBs in dimension 6. In: Proceedings ERATO Conference on Quantum Information Science 2004, Tokyo, pp. 60–61 (2004).
17.
go back to reference Grassl M.: Tomography of quantum states in small dimensions. In: Proceedings of the Workshop on Discrete Tomography and Its Applications. Electronic Notes in Discrete Mathematics, vol. 20, pp. 151–164. Elsevier, Amsterdam (2005). Grassl M.: Tomography of quantum states in small dimensions. In: Proceedings of the Workshop on Discrete Tomography and Its Applications. Electronic Notes in Discrete Mathematics, vol. 20, pp. 151–164. Elsevier, Amsterdam (2005).
19.
go back to reference Grassl M.: Computing equiangular lines in complex space. In: Mathematical Methods in Computer Science. Lecture Notes in Computer Science, vol. 5393, pp. 89–104. Springer, Berlin (2008). Grassl M.: Computing equiangular lines in complex space. In: Mathematical Methods in Computer Science. Lecture Notes in Computer Science, vol. 5393, pp. 89–104. Springer, Berlin (2008).
21.
go back to reference Haantjes J.: Equilateral point-sets in elliptic two- and three-dimensional spaces. Nieuw Arch. Wiskunde 2(22), 355–362 (1948). Haantjes J.: Equilateral point-sets in elliptic two- and three-dimensional spaces. Nieuw Arch. Wiskunde 2(22), 355–362 (1948).
22.
go back to reference Hoggar S.G.: Two quaternionic \(4\)-polytopes. In: The Geometric Vein, pp. 219–230. Springer, New York (1981). Hoggar S.G.: Two quaternionic \(4\)-polytopes. In: The Geometric Vein, pp. 219–230. Springer, New York (1981).
23.
go back to reference Hoggar S.G.: \(t\)-designs in projective spaces. Eur. J. Comb. 3(3), 233–254 (1982). Hoggar S.G.: \(t\)-designs in projective spaces. Eur. J. Comb. 3(3), 233–254 (1982).
24.
go back to reference Hoggar S.G.: \(64\) lines from a quaternionic polytope. Geom. Dedicata 69(3), 287–289 (1998). Hoggar S.G.: \(64\) lines from a quaternionic polytope. Geom. Dedicata 69(3), 287–289 (1998).
25.
go back to reference Jedwab J., Wiebe A.: A simple construction of complex equiangular lines. In: Colbourn C.J. (ed.) Algebraic Design Theory and Hadamard Matrices. Springer Proceedings in Mathematics & Statistics. Springer (to appear). arXiv:1408.2492 [math.CO] (2015). Jedwab J., Wiebe A.: A simple construction of complex equiangular lines. In: Colbourn C.J. (ed.) Algebraic Design Theory and Hadamard Matrices. Springer Proceedings in Mathematics & Statistics. Springer (to appear). arXiv:​1408.​2492 [math.CO] (2015).
26.
go back to reference Khatirinejad M.: On Weyl-Heisenberg orbits of equiangular lines. J. Algebr. Comb. 28(3), 333–349 (2008). Khatirinejad M.: On Weyl-Heisenberg orbits of equiangular lines. J. Algebr. Comb. 28(3), 333–349 (2008).
27.
go back to reference Kibler M.R.: On two ways to look for mutually unbiased bases. Acta Polytech. 54(2), 124–126 (2014). Kibler M.R.: On two ways to look for mutually unbiased bases. Acta Polytech. 54(2), 124–126 (2014).
28.
go back to reference König H.: Cubature formulas on spheres. In: Advances in Multivariate Approximation (Witten-Bommerholz, 1998). Mathematical Research, vol. 107, pp. 201–211. Wiley-VCH, Berlin (1999). König H.: Cubature formulas on spheres. In: Advances in Multivariate Approximation (Witten-Bommerholz, 1998). Mathematical Research, vol. 107, pp. 201–211. Wiley-VCH, Berlin (1999).
29.
go back to reference Pott A.: Finite Geometry and Character Theory. Lecture Notes in Mathematics, vol. 1601. Springer, Berlin (1995). Pott A.: Finite Geometry and Character Theory. Lecture Notes in Mathematics, vol. 1601. Springer, Berlin (1995).
30.
go back to reference Renes J.M., Blume-Kohout R., Scott A.J., Caves C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45(6), 2171–2180 (2004). Renes J.M., Blume-Kohout R., Scott A.J., Caves C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45(6), 2171–2180 (2004).
31.
go back to reference Roy A.: Complex lines with restricted angles. PhD thesis, University of Waterloo (2005). Roy A.: Complex lines with restricted angles. PhD thesis, University of Waterloo (2005).
32.
go back to reference Scott A.J., Grassl M.: Symmetric informationally complete positive-operator-valued measures: a new computer study. J. Math. Phys. 51(4), 042203 (16 pages) (2010). Scott A.J., Grassl M.: Symmetric informationally complete positive-operator-valued measures: a new computer study. J. Math. Phys. 51(4), 042203 (16 pages) (2010).
33.
go back to reference Weyl H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1950). Weyl H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1950).
34.
go back to reference Wiebe A.: Constructions of complex equiangular lines. Master’s thesis, Simon Fraser University (2013). Wiebe A.: Constructions of complex equiangular lines. Master’s thesis, Simon Fraser University (2013).
35.
go back to reference Wootters W.K.: Quantum measurements and finite geometry. Found. Phys. 36(1), 112–126 (2006). Wootters W.K.: Quantum measurements and finite geometry. Found. Phys. 36(1), 112–126 (2006).
36.
go back to reference Zauner G.: Quantendesigns: Grundzüge einer nichtkommutativen Designtheorie. PhD thesis, University of Vienna (1999). Zauner G.: Quantendesigns: Grundzüge einer nichtkommutativen Designtheorie. PhD thesis, University of Vienna (1999).
Metadata
Title
Constructions of complex equiangular lines from mutually unbiased bases
Authors
Jonathan Jedwab
Amy Wiebe
Publication date
01-07-2016
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 1/2016
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-015-0064-8

Other articles of this Issue 1/2016

Designs, Codes and Cryptography 1/2016 Go to the issue

Premium Partner