Skip to main content
Top

2020 | OriginalPaper | Chapter

3. Contact Force Models for Granular Materials

Authors : Shunying Ji, Lu Liu

Published in: Computational Granular Mechanics and Its Engineering Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the discrete element method (DEM), each particle in the bulk material is considered to be an independent discrete element which has its own physical parameters (shape, density, size and et al.) and mechanical properties (elastic modulus, Poisson’s ratio and et al.). The interconnection and constraints between discrete particles are activated by contacts, which can fully reflect the discontinuity of granular materials. In DEM simulations, particles’ attributes, such as the position, velocity and angular velocity, are computed and stored at each time step. In sum, this method has the advantage of taking full account of the unique properties of each particle.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Azevedo N, Candeias M, Gouveia F (2015) A rigid particle model for rock fracture following the Voronoi tessellation of the grain structure: formulation and validation. Rock Mech Rock Eng 48(2):535–557CrossRef Azevedo N, Candeias M, Gouveia F (2015) A rigid particle model for rock fracture following the Voronoi tessellation of the grain structure: formulation and validation. Rock Mech Rock Eng 48(2):535–557CrossRef
go back to reference Babic M, Shen HH, Shen HT (1990) The stress tensor in granular shear flows of uniform, deformable disks at high solids concentrations. J Fluid Mech 219:81–118CrossRef Babic M, Shen HH, Shen HT (1990) The stress tensor in granular shear flows of uniform, deformable disks at high solids concentrations. J Fluid Mech 219:81–118CrossRef
go back to reference Bahrami M, Yovanovich MM, Culham JR (2005) A compact model for spherical rough contacts. J Tribol 127(4):884–889CrossRef Bahrami M, Yovanovich MM, Culham JR (2005) A compact model for spherical rough contacts. J Tribol 127(4):884–889CrossRef
go back to reference Bala K, Pradhan PR, Saxena NS et al (1989) Effective thermal conductivity of copper powders. J Phys D Appl Phys 22(8):1068CrossRef Bala K, Pradhan PR, Saxena NS et al (1989) Effective thermal conductivity of copper powders. J Phys D Appl Phys 22(8):1068CrossRef
go back to reference Batchelor GK, O’Brien RW (1977) Thermal or electrical conduction through a granular material. Proc R Soc A Math Phys Eng Sci 355(355):313–333 Batchelor GK, O’Brien RW (1977) Thermal or electrical conduction through a granular material. Proc R Soc A Math Phys Eng Sci 355(355):313–333
go back to reference Behraftar S, Galindo-Torres SA, Scheuermann A et al (2017) Validation of a novel discrete-based model for fracturing of brittle materials. Comput Geotech 81:274–283CrossRef Behraftar S, Galindo-Torres SA, Scheuermann A et al (2017) Validation of a novel discrete-based model for fracturing of brittle materials. Comput Geotech 81:274–283CrossRef
go back to reference Bergman TL, Lavine A, Incropera FP et al (2007) Fundamentals of heat and mass transfer. Wiley Bergman TL, Lavine A, Incropera FP et al (2007) Fundamentals of heat and mass transfer. Wiley
go back to reference Bradley RS (1932) The cohesive force between solid surfaces and the surface energy of solids. Phil Mag 13(86):853–862MATHCrossRef Bradley RS (1932) The cohesive force between solid surfaces and the surface energy of solids. Phil Mag 13(86):853–862MATHCrossRef
go back to reference Briscoe BJ, Adams MJ (1987) Tribology in particulate technology. Adam Higler Briscoe BJ, Adams MJ (1987) Tribology in particulate technology. Adam Higler
go back to reference Brizmer V, Zait Y, Kligerman Y et al (2006) The effect of contact conditions and material properties on elastic–plastic spherical contact. J Mech Mater Struct 5:865–879CrossRef Brizmer V, Zait Y, Kligerman Y et al (2006) The effect of contact conditions and material properties on elastic–plastic spherical contact. J Mech Mater Struct 5:865–879CrossRef
go back to reference Bardet JP, Huang Q (1992) Numerical modeling of micro-polar effects in idealized granular materials. Am Soc Mech Eng Mater Div (Publication) MD 37:85–92 Bardet JP, Huang Q (1992) Numerical modeling of micro-polar effects in idealized granular materials. Am Soc Mech Eng Mater Div (Publication) MD 37:85–92
go back to reference Chen K, Cole J, Conger C et al (2012) Packing grains by thermally cycling. Physics 442(7100):257 Chen K, Cole J, Conger C et al (2012) Packing grains by thermally cycling. Physics 442(7100):257
go back to reference Chen K, Harris A, Draskovic J et al (2009) Granular fragility under thermal cycles. Granul Matter 11(4):237–242CrossRef Chen K, Harris A, Draskovic J et al (2009) Granular fragility under thermal cycles. Granul Matter 11(4):237–242CrossRef
go back to reference Chang L, Zhang H (2007) A mathematical model for frictional elastic-plastic sphere-on-flat contacts at sliding incipient. J Appl Mech 74(1):100–106MATHCrossRef Chang L, Zhang H (2007) A mathematical model for frictional elastic-plastic sphere-on-flat contacts at sliding incipient. J Appl Mech 74(1):100–106MATHCrossRef
go back to reference Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53(2):314–326CrossRef Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53(2):314–326CrossRef
go back to reference Di Renzo A, Di Maio FP (2004) Comparison of contact-force models for the simulation of collisions in dem-based granular flow codes. Chem Eng Sci 59(3):525–541CrossRef Di Renzo A, Di Maio FP (2004) Comparison of contact-force models for the simulation of collisions in dem-based granular flow codes. Chem Eng Sci 59(3):525–541CrossRef
go back to reference Feng YT, Han K, Owen DRJ (2012) Energy-conserving contact interaction models for arbitrarily shaped discrete elements. Comput Methods Appl Mech Eng 205–208(1):169–177MathSciNetMATHCrossRef Feng YT, Han K, Owen DRJ (2012) Energy-conserving contact interaction models for arbitrarily shaped discrete elements. Comput Methods Appl Mech Eng 205–208(1):169–177MathSciNetMATHCrossRef
go back to reference Hadley GR (1986) Thermal conductivity of packed metal powders. Int J Heat Mass Transf 29(6):909–920CrossRef Hadley GR (1986) Thermal conductivity of packed metal powders. Int J Heat Mass Transf 29(6):909–920CrossRef
go back to reference Iwashita K, Oda M (2000) Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol 109(1–3):192–205CrossRef Iwashita K, Oda M (2000) Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol 109(1–3):192–205CrossRef
go back to reference Ji SY, Di SC, Long X (2017) DEM simulation of uniaxial compressive and flexural strength of sea ice: parametric study of inter-particle bonding strength. ASCE J Eng Mech 143(1):C4016010CrossRef Ji SY, Di SC, Long X (2017) DEM simulation of uniaxial compressive and flexural strength of sea ice: parametric study of inter-particle bonding strength. ASCE J Eng Mech 143(1):C4016010CrossRef
go back to reference Ji SY, Shen HH (2006) Effect of contact force models on granular flow dynamics. ASCE J Eng Mech 132(11):1252–1259CrossRef Ji SY, Shen HH (2006) Effect of contact force models on granular flow dynamics. ASCE J Eng Mech 132(11):1252–1259CrossRef
go back to reference Ji S, Shen HH (2008) Internal parameters and regime map for soft poly-dispersed granular materials. J Rheol 52(1):87–103CrossRef Ji S, Shen HH (2008) Internal parameters and regime map for soft poly-dispersed granular materials. J Rheol 52(1):87–103CrossRef
go back to reference Jiang MJ, Yu HS, Harris D (2005) A novel discrete model for granular material incorporating rolling resistance. Comput Geotech 32(5):340–357CrossRef Jiang MJ, Yu HS, Harris D (2005) A novel discrete model for granular material incorporating rolling resistance. Comput Geotech 32(5):340–357CrossRef
go back to reference Jiang M, Yu HS, Harris D (2006) Kinematic variables bridging discrete and continuum granular mechanics. Mech Res Commun 33(5):651–666MathSciNetMATHCrossRef Jiang M, Yu HS, Harris D (2006) Kinematic variables bridging discrete and continuum granular mechanics. Mech Res Commun 33(5):651–666MathSciNetMATHCrossRef
go back to reference Jiang S, Ye Y, Li X et al (2019) DEM modeling of crack coalescence between two parallel flaws in SiC ceramics. Ceram Int 45(12):14997–15014CrossRef Jiang S, Ye Y, Li X et al (2019) DEM modeling of crack coalescence between two parallel flaws in SiC ceramics. Ceram Int 45(12):14997–15014CrossRef
go back to reference Johnson KL, Greenwood JA (1997) An adhesion map for the contact of elastic spheres. J Colloid Interface Sci 192(2):326–333CrossRef Johnson KL, Greenwood JA (1997) An adhesion map for the contact of elastic spheres. J Colloid Interface Sci 192(2):326–333CrossRef
go back to reference Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond Math Phys Eng Sci 324(1558):301–313 Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond Math Phys Eng Sci 324(1558):301–313
go back to reference Kogut L, Etsion I (2003) A semi-analytical solution for the sliding inception of a spherical contact. ASME J Tribol 125:499–506CrossRef Kogut L, Etsion I (2003) A semi-analytical solution for the sliding inception of a spherical contact. ASME J Tribol 125:499–506CrossRef
go back to reference Kremmer M, Favier JF (2001a) A method for representing boundaries in discrete element modelling-Part II: kinematics. Int J Numer Meth Eng 51:1423–1436MATHCrossRef Kremmer M, Favier JF (2001a) A method for representing boundaries in discrete element modelling-Part II: kinematics. Int J Numer Meth Eng 51:1423–1436MATHCrossRef
go back to reference Kremmer M, Favier JF (2001b) A method for representing boundaries in discrete element modelling-part I: geometry and contact detection. Int J Numer Meth Eng 51:1407–1421MATHCrossRef Kremmer M, Favier JF (2001b) A method for representing boundaries in discrete element modelling-part I: geometry and contact detection. Int J Numer Meth Eng 51:1407–1421MATHCrossRef
go back to reference Lambert MA, Fletcher LS (1996) Thermal contact conductance of spherical rough metals. J Heat Transfer 119(4):684–690CrossRef Lambert MA, Fletcher LS (1996) Thermal contact conductance of spherical rough metals. J Heat Transfer 119(4):684–690CrossRef
go back to reference Landau LD, Lifshit’S EM (1999) Theory of elasticity. World Publishing Corporation Landau LD, Lifshit’S EM (1999) Theory of elasticity. World Publishing Corporation
go back to reference Lian G, Thornton C, Adams MJ (1993) A theoretical study of the liquid bridge forces between two rigid spherical bodies. J Colloid Interface Sci 161(1):138–147CrossRef Lian G, Thornton C, Adams MJ (1993) A theoretical study of the liquid bridge forces between two rigid spherical bodies. J Colloid Interface Sci 161(1):138–147CrossRef
go back to reference Lian G, Thornton C, Adams MJ (1998) Discrete particle simulation of agglomerate impact coalescence. Chem Eng Sci 53(19):3381–3391CrossRef Lian G, Thornton C, Adams MJ (1998) Discrete particle simulation of agglomerate impact coalescence. Chem Eng Sci 53(19):3381–3391CrossRef
go back to reference Long X, Ji S, Wang Y (2019) Validation of microparameters in discrete element modeling of sea ice failure process. Part Sci Technol 37(5):546–555CrossRef Long X, Ji S, Wang Y (2019) Validation of microparameters in discrete element modeling of sea ice failure process. Part Sci Technol 37(5):546–555CrossRef
go back to reference Liu L, Ji S (2019) Bond and fracture model in dilated polyhedral DEM and its application to simulate breakage of brittle materials. Granular Matter 21(3):41CrossRef Liu L, Ji S (2019) Bond and fracture model in dilated polyhedral DEM and its application to simulate breakage of brittle materials. Granular Matter 21(3):41CrossRef
go back to reference Lian G, Xu Y, Huang W et al (2001) On the squeeze flow of a power-law fluid between rigid spheres. J Nonnewton Fluid Mech 100(1):151–164MATHCrossRef Lian G, Xu Y, Huang W et al (2001) On the squeeze flow of a power-law fluid between rigid spheres. J Nonnewton Fluid Mech 100(1):151–164MATHCrossRef
go back to reference Mcdowell GR, Bolton MD, Robertson D (1996) The fractal crushing of granular materials. J Mech Phys Solids 44:2079–2102CrossRef Mcdowell GR, Bolton MD, Robertson D (1996) The fractal crushing of granular materials. J Mech Phys Solids 44:2079–2102CrossRef
go back to reference Mesarovic SD, Johnson KL (2000) Adhesive contact of elastic–plastic spheres. J Mech Phys Solids 48(10):2009–2033MATHCrossRef Mesarovic SD, Johnson KL (2000) Adhesive contact of elastic–plastic spheres. J Mech Phys Solids 48(10):2009–2033MATHCrossRef
go back to reference Mindlin RD, Deresiewicz H (1953) Elastic spheres in contact under varying oblique forces. ASME J Appl Mech 20:327–344MathSciNetMATH Mindlin RD, Deresiewicz H (1953) Elastic spheres in contact under varying oblique forces. ASME J Appl Mech 20:327–344MathSciNetMATH
go back to reference Nitka M, Tejchman J (2015) Modelling of concrete behaviour in uniaxial compression and tension with DEM. Granular Matter 17(1):145–164CrossRef Nitka M, Tejchman J (2015) Modelling of concrete behaviour in uniaxial compression and tension with DEM. Granular Matter 17(1):145–164CrossRef
go back to reference Olsson E, Larsson PL (2016) A unified model for the contact behaviour between equal and dissimilar elastic–plastic spherical bodies. Int J Solids Struct 81:23–32CrossRef Olsson E, Larsson PL (2016) A unified model for the contact behaviour between equal and dissimilar elastic–plastic spherical bodies. Int J Solids Struct 81:23–32CrossRef
go back to reference Oda M, Iwashita K (2000) Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int J Eng Sci 38(15):1713–1740CrossRef Oda M, Iwashita K (2000) Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int J Eng Sci 38(15):1713–1740CrossRef
go back to reference Onate E, Rojek J (2004) Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Methods Appl Mech Eng 193:3087–3128MATHCrossRef Onate E, Rojek J (2004) Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Methods Appl Mech Eng 193:3087–3128MATHCrossRef
go back to reference Popov VL (2010) Contact mechanics and friction: physical principles and applications. Springer, BerlinMATHCrossRef Popov VL (2010) Contact mechanics and friction: physical principles and applications. Springer, BerlinMATHCrossRef
go back to reference Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364CrossRef Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364CrossRef
go back to reference Richefeu V, Youssoufi MSE, Peyroux R et al (2008) A model of capillary cohesion for numerical simulations of 3D polydisperse granular media. Int J Numer Anal Meth Geomech 32(11):1365–1383MATHCrossRef Richefeu V, Youssoufi MSE, Peyroux R et al (2008) A model of capillary cohesion for numerical simulations of 3D polydisperse granular media. Int J Numer Anal Meth Geomech 32(11):1365–1383MATHCrossRef
go back to reference Scholtes L, Donze FV (2012) Modelling progressive failure in fractured rock masses using a 3D discrete element method. Int J Rock Mech Min Sci 52:18–30CrossRef Scholtes L, Donze FV (2012) Modelling progressive failure in fractured rock masses using a 3D discrete element method. Int J Rock Mech Min Sci 52:18–30CrossRef
go back to reference Shen HH, Sankaran B (2004) Internal length and time scales in a simple shear granular flow. Phys Rev E 70:051308CrossRef Shen HH, Sankaran B (2004) Internal length and time scales in a simple shear granular flow. Phys Rev E 70:051308CrossRef
go back to reference Soulié F, Cherblanc F, Youssoufi MSE et al (2010) Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. Int J Numer Anal Meth Geomech 30(3):213–228MATHCrossRef Soulié F, Cherblanc F, Youssoufi MSE et al (2010) Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. Int J Numer Anal Meth Geomech 30(3):213–228MATHCrossRef
go back to reference Sridhar MR, Yovanovich MM (1996) Empirical methods to predict Vickers microhardness. Wear 193(1):91–98CrossRef Sridhar MR, Yovanovich MM (1996) Empirical methods to predict Vickers microhardness. Wear 193(1):91–98CrossRef
go back to reference Tabor D (1959) Junction growth in metallic friction: the role of combined stresses and surface contamination. Proc R Soc Lond A 251:378–393CrossRef Tabor D (1959) Junction growth in metallic friction: the role of combined stresses and surface contamination. Proc R Soc Lond A 251:378–393CrossRef
go back to reference Tanner LH, Fahoum M (1976) A study of the surface parameters of ground and lapped metal surfaces, using specular and diffuse reflection of laser light. Wear 36(3):299–316CrossRef Tanner LH, Fahoum M (1976) A study of the surface parameters of ground and lapped metal surfaces, using specular and diffuse reflection of laser light. Wear 36(3):299–316CrossRef
go back to reference Tarokh A, Fakhimi A (2014) Discrete element simulation of the effect of particle size on the size of fracture process zone in quasi-brittle materials. Comput Geotech 62:51–60CrossRef Tarokh A, Fakhimi A (2014) Discrete element simulation of the effect of particle size on the size of fracture process zone in quasi-brittle materials. Comput Geotech 62:51–60CrossRef
go back to reference Thornton C (1997) Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres. Trans ASME J Appl Mech 64:383–386MATHCrossRef Thornton C (1997) Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres. Trans ASME J Appl Mech 64:383–386MATHCrossRef
go back to reference Vu-Quoc L, Zhang X, Lesburg L (2001) Normal and tangential force-displacement relations for frictional elasto-plastic contact of spheres. Int J Solids Struct 38:6455–6489MATHCrossRef Vu-Quoc L, Zhang X, Lesburg L (2001) Normal and tangential force-displacement relations for frictional elasto-plastic contact of spheres. Int J Solids Struct 38:6455–6489MATHCrossRef
go back to reference Wang S, Fan Y, Ji S (2018) Interaction between super-quadric particles and triangular elements and its application to hopper discharge. Powder Technol 339:534–549CrossRef Wang S, Fan Y, Ji S (2018) Interaction between super-quadric particles and triangular elements and its application to hopper discharge. Powder Technol 339:534–549CrossRef
go back to reference Wang Y, Tonon F (2010) Calibration of a discrete element model for intact rock up to its peak strength. Int J Numer Anal Meth Geomech 34(5):447–469MATHCrossRef Wang Y, Tonon F (2010) Calibration of a discrete element model for intact rock up to its peak strength. Int J Numer Anal Meth Geomech 34(5):447–469MATHCrossRef
go back to reference Wang Y, Tonon F (2009) Modeling Lac du Bonnet granite using a discrete element model. Int J Rock Mech Min Sci 46(7):1124–1135CrossRef Wang Y, Tonon F (2009) Modeling Lac du Bonnet granite using a discrete element model. Int J Rock Mech Min Sci 46(7):1124–1135CrossRef
go back to reference Weerasekara NS (2013) The contribution of DEM to the science of comminution. Powder Technol 248:3–24CrossRef Weerasekara NS (2013) The contribution of DEM to the science of comminution. Powder Technol 248:3–24CrossRef
go back to reference Weidenfeld G, Weiss Y, Kalman H (2003) The effect of compression and preconsolidation on the effective thermal conductivity of particulate beds. Powder Technol 133(1):15–22CrossRef Weidenfeld G, Weiss Y, Kalman H (2003) The effect of compression and preconsolidation on the effective thermal conductivity of particulate beds. Powder Technol 133(1):15–22CrossRef
go back to reference Weidenfeld G, Weiss Y, Kalman H (2004) A theoretical model for effective thermal conductivity (ETC) of particulate beds under compression. Granular Matter 6(2–3):121–129MATHCrossRef Weidenfeld G, Weiss Y, Kalman H (2004) A theoretical model for effective thermal conductivity (ETC) of particulate beds under compression. Granular Matter 6(2–3):121–129MATHCrossRef
go back to reference Wensrich CM, Katterfeld A (2012) Rolling friction as a technique for modelling particle shape in DEM. Powder Technol 217(2):409–417CrossRef Wensrich CM, Katterfeld A (2012) Rolling friction as a technique for modelling particle shape in DEM. Powder Technol 217(2):409–417CrossRef
go back to reference Wu CY, Li LY, Thornton C (2003) Rebound behaviour of spheres for plastic impacts. Int J Impact Eng 28(9):929–946CrossRef Wu CY, Li LY, Thornton C (2003) Rebound behaviour of spheres for plastic impacts. Int J Impact Eng 28(9):929–946CrossRef
go back to reference Zhang DZ, Rauenzahn RM (2000) Stress relaxation in dense and slow granular flows. J Rheol 44(5):1019–1041CrossRef Zhang DZ, Rauenzahn RM (2000) Stress relaxation in dense and slow granular flows. J Rheol 44(5):1019–1041CrossRef
go back to reference Zhang HW, Zhou Q, Xing HL et al (2011) A DEM study on the effective thermal conductivity of granular assemblies. Powder Technol 205(1–3):172–183CrossRef Zhang HW, Zhou Q, Xing HL et al (2011) A DEM study on the effective thermal conductivity of granular assemblies. Powder Technol 205(1–3):172–183CrossRef
go back to reference Zheng QJ, Zhou ZY, Yu AB (2013) Contact forces between viscoelastic ellipsoidal particles. Powder Technol 248:25–33CrossRef Zheng QJ, Zhou ZY, Yu AB (2013) Contact forces between viscoelastic ellipsoidal particles. Powder Technol 248:25–33CrossRef
go back to reference Zhou Y, Zhou Y (2011) A theoretical model of collision between soft-spheres with Hertz elastic loading and nonlinear plastic unloading. Theor Appl Mech Lett 1(4):34–39CrossRef Zhou Y, Zhou Y (2011) A theoretical model of collision between soft-spheres with Hertz elastic loading and nonlinear plastic unloading. Theor Appl Mech Lett 1(4):34–39CrossRef
go back to reference Zhu HP, Zhou ZY, Yang RY et al (2008) Discrete particle simulation of particulate systems: a review of major applications and findings. Chem Eng Sci 63(23):5728–5770CrossRef Zhu HP, Zhou ZY, Yang RY et al (2008) Discrete particle simulation of particulate systems: a review of major applications and findings. Chem Eng Sci 63(23):5728–5770CrossRef
Metadata
Title
Contact Force Models for Granular Materials
Authors
Shunying Ji
Lu Liu
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-3304-4_3

Premium Partners