Skip to main content
Top

2022 | Book

Continual Semi-Supervised Learning

First International Workshop, CSSL 2021, Virtual Event, August 19–20, 2021, Revised Selected Papers

insite
SEARCH

About this book

This book constitutes the proceedings of the First International Workshop on Continual Semi-Supervised Learning, CSSL 2021, which took place as a virtual event during August 2021.The 9 full papers and 0 short papers included in this book were carefully reviewed and selected from 14 submissions.

Table of Contents

Frontmatter
International Workshop on Continual Semi-Supervised Learning: Introduction, Benchmarks and Baselines
Abstract
The aim of this paper is to formalise a new continual semi-supervised learning (CSSL) paradigm, proposed to the attention of the machine learning community via the IJCAI 2021 International Workshop on Continual Semi-Supervised Learning (CSSL@IJCAI) (https://​sites.​google.​com/​view/​sscl-workshop-ijcai-2021/​), with the aim of raising the field’s awareness about this problem and mobilising its effort in this direction. After a formal definition of continual semi-supervised learning and the appropriate training and testing protocols, the paper introduces two new benchmarks specifically designed to assess CSSL on two important computer vision tasks: activity recognition and crowd counting. We describe the Continual Activity Recognition (CAR) and Continual Crowd Counting (CCC) challenges built upon those benchmarks, the baseline models proposed for the challenges, and describe a simple CSSL baseline which consists in applying batch self-training in temporal sessions, for a limited number of rounds. The results show that learning from unlabelled data streams is extremely challenging, and stimulate the search for methods that can encode the dynamics of the data stream.
Ajmal Shahbaz, Salman Khan, Mohammad Asiful Hossain, Vincenzo Lomonaco, Kevin Cannons, Zhan Xu, Fabio Cuzzolin
Unsupervised Continual Learning via Pseudo Labels
Abstract
Continual learning aims to learn new tasks incrementally using less computation and memory resources instead of retraining the model from scratch whenever new task arrives. However, existing approaches are designed in supervised fashion assuming all data from new tasks have been manually annotated, which are not practical for many real-life applications. In this work, we propose to use pseudo label instead of the ground truth to make continual learning feasible in unsupervised mode. The pseudo labels of new data are obtained by applying global clustering algorithm and we propose to use the model updated from last incremental step as the feature extractor. Due to the scarcity of existing work, we introduce a new benchmark experimental protocol for unsupervised continual learning of image classification task under class-incremental setting where no class label is provided for each incremental learning step. Our method is evaluated on the CIFAR-100 and ImageNet (ILSVRC) datasets by incorporating the pseudo label with various existing supervised approaches and show promising results in unsupervised scenario.
Jiangpeng He, Fengqing Zhu
Transfer and Continual Supervised Learning for Robotic Grasping Through Grasping Features
Abstract
We present a Transfer and Continual Learning method for robotic grasping tasks, based on small vision-depth (RGBD) datasets and realized through the use of Grasping Features. Given a network architecture composed by a CNN (Convolutional Neural Network) followed by a FCC (Fully Connected Cascade Neural Network), we exploit high-level features specific of the grasping tasks, as extracted by the convolutional network from RGBD images. These features are more descriptive of a grasping task than just visual ones, and thus more efficient for transfer learning purposes. Being datasets for visual grasping less common than those for image recognition, we also propose an efficient way to generate these data using only simple geometric structures. This reduces the computational burden of the FCC and allows to obtain a better performance with the same amount of data. Simulation results using the collaborative UR-10 robot and a jaw gripper are reported to show the quality of the proposed method.
Luca Monorchio, Marco Capotondi, Mario Corsanici, Wilson Villa, Alessandro De Luca, Francesco Puja
Unsupervised Continual Learning via Self-adaptive Deep Clustering Approach
Abstract
Unsupervised continual learning remains a relatively uncharted territory in the existing literature because the vast majority of existing works call for unlimited access of ground truth incurring expensive labelling cost. Another issue lies in the problem of task boundaries and task IDs which must be known for model’s updates or model’s predictions hindering feasibility for real-time deployment. Knowledge Retention in Self-Adaptive Deep Continual Learner, (KIERA), is proposed in this paper. KIERA is developed from the notion of flexible deep clustering approach possessing an elastic network structure to cope with changing environments in the timely manner. The centroid-based experience replay is put forward to overcome the catastrophic forgetting problem. KIERA does not exploit any labelled samples for model updates while featuring a task-agnostic merit. The advantage of KIERA has been numerically validated in popular continual learning problems where it shows highly competitive performance compared to state-of-the art approaches. Our implementation is available in https://​researchdata.​ntu.​edu.​sg/​dataset.​xhtml?​persistentId=​doi:​10.​21979/​N9/​P9DFJH.
Mahardhika Pratama, Andri Ashfahani, Edwin Lughofer
Evaluating Continual Learning Algorithms by Generating 3D Virtual Environments
Abstract
Continual learning refers to the ability of humans and animals to incrementally learn over time in a given environment. Trying to simulate this learning process in machines is a challenging task, also due to the inherent difficulty in creating conditions for designing continuously evolving dynamics that are typical of the real-world. Many existing research works usually involve training and testing of virtual agents on datasets of static images or short videos, considering sequences of distinct learning tasks. However, in order to devise continual learning algorithms that operate in more realistic conditions, it is fundamental to gain access to rich, fully-customizable and controlled experimental playgrounds. Focussing on the specific case of vision, we thus propose to leverage recent advances in 3D virtual environments in order to approach the automatic generation of potentially life-long dynamic scenes with photo-realistic appearance. Scenes are composed of objects that move along variable routes with different and fully customizable timings, and randomness can also be included in their evolution. A novel element of this paper is that scenes are described in a parametric way, thus allowing the user to fully control the visual complexity of the input stream the agent perceives. These general principles are concretely implemented exploiting a recently published 3D virtual environment. The user can generate scenes without the need of having strong skills in computer graphics, since all the generation facilities are exposed through a simple high-level Python interface. We publicly share the proposed generator.
Enrico Meloni, Alessandro Betti, Lapo Faggi, Simone Marullo, Matteo Tiezzi, Stefano Melacci
A Benchmark and Empirical Analysis for Replay Strategies in Continual Learning
Abstract
With the capacity of continual learning, humans can continuously acquire knowledge throughout their lifespan. However, computational systems are not, in general, capable of learning tasks sequentially. This long-standing challenge for deep neural networks (DNNs) is called catastrophic forgetting. Multiple solutions have been proposed to overcome this limitation. This paper makes an in-depth evaluation of the memory replay methods, exploring the efficiency, performance, and scalability of various sampling strategies when selecting replay data. All experiments are conducted on multiple datasets under various domains. Finally, a practical solution for selecting replay methods for various data distributions is provided.
Qihan Yang, Fan Feng, Rosa H. M. Chan
SPeCiaL: Self-supervised Pretraining for Continual Learning
Abstract
This paper presents SPeCiaL: a method for unsupervised pretraining of representations tailored for continual learning. Our approach devises a meta-learning objective that differentiates through a sequential learning process. Specifically, we train a linear model over the representations to match different augmented views of the same image together, each view presented sequentially. The linear model is then evaluated on both its ability to classify images it just saw, and also on images from previous iterations. This gives rise to representations that favor quick knowledge retention with minimal forgetting. We evaluate SPeCiaL in the Continual Few-Shot Learning setting, and show that it can match or outperform other supervised pretraining approaches.
Lucas Caccia, Joelle Pineau
Distilled Replay: Overcoming Forgetting Through Synthetic Samples
Abstract
Replay strategies are Continual Learning techniques which mitigate catastrophic forgetting by keeping a buffer of patterns from previous experiences, which are interleaved with new data during training. The amount of patterns stored in the buffer is a critical parameter which largely influences the final performance and the memory footprint of the approach. This work introduces Distilled Replay, a novel replay strategy for Continual Learning which is able to mitigate forgetting by keeping a very small buffer (1 pattern per class) of highly informative samples. Distilled Replay builds the buffer through a distillation process which compresses a large dataset into a tiny set of informative examples. We show the effectiveness of our Distilled Replay against popular replay-based strategies on four Continual Learning benchmarks.
Andrea Rosasco, Antonio Carta, Andrea Cossu, Vincenzo Lomonaco, Davide Bacciu
Self-supervised Novelty Detection for Continual Learning: A Gradient-Based Approach Boosted by Binary Classification
Abstract
Novelty detection aims to automatically identify out of distribution (OOD) data, without any prior knowledge of them. It is a critical step in continual learning, in order to sense the arrival of new data and initialize the learning process. Conventional methods of OOD detection perform multi-variate analysis on an ensemble of data or features, and usually resort to the supervision with OOD data to improve the accuracy. In reality, such supervision is impractical as one cannot anticipate the anomalous data. In this paper, we propose a novel, self-supervised approach that does not rely on any pre-defined OOD data: (1) The new method evaluates the Mahalanobis distance of the gradients between the in-distribution and OOD data. (2) It is assisted by a self-supervised binary classifier to guide the label selection to generate the gradients, and maximize the Mahalanobis distance. In the evaluation with multiple datasets, such as CIFAR-10, CIFAR-100, SVHN and ImageNet, the proposed approach consistently outperforms state-of-the-art supervised and unsupervised methods in the area under the receiver operating characteristic (AUROC). We further demonstrate that this detector is able to accurately learn one OOD class in continual learning.
Jingbo Sun, Li Yang, Jiaxin Zhang, Frank Liu, Mahantesh Halappanavar, Deliang Fan, Yu Cao
Backmatter
Metadata
Title
Continual Semi-Supervised Learning
Editors
Fabio Cuzzolin
Kevin Cannons
Vincenzo Lomonaco
Copyright Year
2022
Electronic ISBN
978-3-031-17587-9
Print ISBN
978-3-031-17586-2
DOI
https://doi.org/10.1007/978-3-031-17587-9

Premium Partner