Skip to main content
Top
Published in: Journal of Nanoparticle Research 11/2015

01-11-2015 | Research Paper

Control of doxorubicin release from magnetic Poly(dl-lactide-co-glycolide) nanoparticles by application of a non-permanent magnetic field

Authors: Inês N. Peça, A. Bicho, Rui Gardner, M. Margarida Cardoso

Published in: Journal of Nanoparticle Research | Issue 11/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work studied the effect of the application time of a non-permanent magnetic field on the rate of drug release from iron oxide polymeric nanoparticles. Magnetically responsive doxorubicin loaded poly(d-lactide-co-glycolide) (PLGA) nanoparticles were synthetized by the o/w solvent extraction/evaporation method and characterized. The produced particles show spherical shapes exhibiting a size between 200 and 400 nm, a drug loading of 3.6 % (w/w) and an iron concentration of 20.7 % (w/w). Cell cytotoxicity tests showed that unloaded magnetic PLGA nanoparticles were nontoxic. Concerning the therapeutic activity, doxorubicin-loaded magnetic particles cause a remarkable enhancement of the cell inhibition rates compared to their non-magnetic counterparts (40 against 7 % of dead cells). In vitro drug release studies performed under a non-permanent magnetic field show that the application time and the on/off cycle duration have a great influence with respect to the final amount and to the rate of drug release. The final amount and the rate of doxorubicin released increase with the time of field application reaching higher values for a higher number of pulses with a lower duration. Doxorubicin release mechanism has shown to be governed by Fickian diffusion in the absence of a magnetic field while in the presence of a magnetic field some controlled relaxation polymer chains might also be present. The results show that the drug release rate from magnetic PLGA nanoparticles can be modulated through the application time and the on/off cycles duration of a non-permanent magnetic field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abdalla MO, Karna P, Sajja HK, Mao H, Yates C, Turner T, Aneja R (2011) Enhanced noscapine delivery using uPAR-targeted optical-MR imaging trackable nanoparticles for prostate cancer therapy. J Control Release 149:314–322CrossRef Abdalla MO, Karna P, Sajja HK, Mao H, Yates C, Turner T, Aneja R (2011) Enhanced noscapine delivery using uPAR-targeted optical-MR imaging trackable nanoparticles for prostate cancer therapy. J Control Release 149:314–322CrossRef
go back to reference Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lubbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648 Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lubbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648
go back to reference Alexiou C, Schmid RJ, Bergemann C, Henke J, Erhardt W, Huenges E, Parak FJ (2003) Magnetic drug targeting biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target 11:139–149CrossRef Alexiou C, Schmid RJ, Bergemann C, Henke J, Erhardt W, Huenges E, Parak FJ (2003) Magnetic drug targeting biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target 11:139–149CrossRef
go back to reference Andhariya N, Chudasama B, Mehta RV, Upadhyay RV (2011) Biodegradable thermoresponsive polymeric magnetic nanoparticles: a new drug delivery platform for doxorubicin. J Nanopart Res 13:1677–1688CrossRef Andhariya N, Chudasama B, Mehta RV, Upadhyay RV (2011) Biodegradable thermoresponsive polymeric magnetic nanoparticles: a new drug delivery platform for doxorubicin. J Nanopart Res 13:1677–1688CrossRef
go back to reference Artemov D (2003) Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem 90:518–524CrossRef Artemov D (2003) Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem 90:518–524CrossRef
go back to reference Bicho A, Peça IN, Roque ACA, Cardoso MM (2010) Anti-CD8 conjugated nanoparticles to target mammalian cells expressing CD8. Int J Pharm 399:80–86CrossRef Bicho A, Peça IN, Roque ACA, Cardoso MM (2010) Anti-CD8 conjugated nanoparticles to target mammalian cells expressing CD8. Int J Pharm 399:80–86CrossRef
go back to reference Cardoso MM, Peça IN, Roque ACA (2012) Antibody-conjugated nanoparticles for therapeutic applications. Curr Med Chem 19:3103–3127CrossRef Cardoso MM, Peça IN, Roque ACA (2012) Antibody-conjugated nanoparticles for therapeutic applications. Curr Med Chem 19:3103–3127CrossRef
go back to reference da Silva EP, Sitta DLA, Fragal VH, Cellet TSP, Mauricio MR, Garcia FP, Nakamura CV, Guilherme MR, Rubira AF, Kunita MH (2014) Covalent TiO2/pectin microspheres with Fe3O4 nanoparticles for magnetic field-modulated drug delivery. Int J Biol Macromol 67:43–52CrossRef da Silva EP, Sitta DLA, Fragal VH, Cellet TSP, Mauricio MR, Garcia FP, Nakamura CV, Guilherme MR, Rubira AF, Kunita MH (2014) Covalent TiO2/pectin microspheres with Fe3O4 nanoparticles for magnetic field-modulated drug delivery. Int J Biol Macromol 67:43–52CrossRef
go back to reference Demarchi CA, Debrassi A, Buzzi FC, Corrêa R, Filho VC, Rodrigues CA, Nedelko N, Demchenko P, Slawska-Waniewska A, Dłuzewski P, Greneche JM (2014) A magnetic nanogel based on O-carboxymethylchitosan for antitumor drug delivery: synthesis, characterization and in vitro drug release. Soft Matter 10:3441CrossRef Demarchi CA, Debrassi A, Buzzi FC, Corrêa R, Filho VC, Rodrigues CA, Nedelko N, Demchenko P, Slawska-Waniewska A, Dłuzewski P, Greneche JM (2014) A magnetic nanogel based on O-carboxymethylchitosan for antitumor drug delivery: synthesis, characterization and in vitro drug release. Soft Matter 10:3441CrossRef
go back to reference Ditsch A, Lindenmann S, Laibinis PE, Wang DIC, Hatton TA (2005) High-gradient magnetic separation of magnetic nanoclusters. Ind Eng Chem Res 44:6824–6836CrossRef Ditsch A, Lindenmann S, Laibinis PE, Wang DIC, Hatton TA (2005) High-gradient magnetic separation of magnetic nanoclusters. Ind Eng Chem Res 44:6824–6836CrossRef
go back to reference Fang C, Kievit FM, Veiseh O, Stephen ZR, Wang T, Lee D, Ellenbogen RG, Zhang M (2012) Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach. J Control Release 162:233–241CrossRef Fang C, Kievit FM, Veiseh O, Stephen ZR, Wang T, Lee D, Ellenbogen RG, Zhang M (2012) Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach. J Control Release 162:233–241CrossRef
go back to reference Gonzales M, Krishnan KM (2005) Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia. J Magn Magn Mater 293:265–270CrossRef Gonzales M, Krishnan KM (2005) Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia. J Magn Magn Mater 293:265–270CrossRef
go back to reference Guilherme MR, Oliveira RS, Mauricio MR, Cellet TSP, Pereira GM, Kunita MH, Muniz EC, Rubira AF (2012) Albumin release from a brain-resembling superabsorbent magnetic hydrogel based on starch. Soft Matter 8:6629–6637CrossRef Guilherme MR, Oliveira RS, Mauricio MR, Cellet TSP, Pereira GM, Kunita MH, Muniz EC, Rubira AF (2012) Albumin release from a brain-resembling superabsorbent magnetic hydrogel based on starch. Soft Matter 8:6629–6637CrossRef
go back to reference Ito A, Tanaka K, Kondo K, Shinkai M, Honda H, Matsumoto K, Saida T, Kobayashi T (2003) Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci 94:308–313CrossRef Ito A, Tanaka K, Kondo K, Shinkai M, Honda H, Matsumoto K, Saida T, Kobayashi T (2003) Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci 94:308–313CrossRef
go back to reference Jung CW (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674CrossRef Jung CW (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674CrossRef
go back to reference Kocbek P, Kralj S, Kreft ME, Krist J (2013) Targeting intracellular compartments by magnetic polymeric nanoparticles. Eur J Pharm Sci 50:130–138CrossRef Kocbek P, Kralj S, Kreft ME, Krist J (2013) Targeting intracellular compartments by magnetic polymeric nanoparticles. Eur J Pharm Sci 50:130–138CrossRef
go back to reference Lee S-J, Jeong J-R, Shin S-C, Kim J-C, Chang Y-H, Chang Y-M, Kim JD (2004) Nanoparticles of magnetic ferric oxides encapsulated with poly(D, L latide-co-glycolide) and their application to magnetic resonance imaging contrast agent. J Magn Magn Mater 272–276:2432–2433CrossRef Lee S-J, Jeong J-R, Shin S-C, Kim J-C, Chang Y-H, Chang Y-M, Kim JD (2004) Nanoparticles of magnetic ferric oxides encapsulated with poly(D, L latide-co-glycolide) and their application to magnetic resonance imaging contrast agent. J Magn Magn Mater 272–276:2432–2433CrossRef
go back to reference Li M, Neoh K-G, Wang R, Zong B-Y, Tan JY, Kang E-T (2013) Methotrexate-conjugated and hyperbranched polyglycerol-grafted Fe3O4 magnetic nanoparticles for targeted anticancer effects. Eur J Pharm Sci 48:111–120CrossRef Li M, Neoh K-G, Wang R, Zong B-Y, Tan JY, Kang E-T (2013) Methotrexate-conjugated and hyperbranched polyglycerol-grafted Fe3O4 magnetic nanoparticles for targeted anticancer effects. Eur J Pharm Sci 48:111–120CrossRef
go back to reference Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229CrossRef Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229CrossRef
go back to reference Monneret C (2001) Recent developments in the field of antitumor anthracyclines. Eur J Med Chem 36:483–493CrossRef Monneret C (2001) Recent developments in the field of antitumor anthracyclines. Eur J Med Chem 36:483–493CrossRef
go back to reference Murakami H, Kobayashi M, Takeuchi H, Kawashima Y (2000) Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles. Powder Technol 107:137–143CrossRef Murakami H, Kobayashi M, Takeuchi H, Kawashima Y (2000) Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles. Powder Technol 107:137–143CrossRef
go back to reference Na K, Lee ES, Bae YH (2003) Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH dependant cell interaction, internalization and cytotoxicity. J Control Release 87:3–13CrossRef Na K, Lee ES, Bae YH (2003) Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH dependant cell interaction, internalization and cytotoxicity. J Control Release 87:3–13CrossRef
go back to reference Papadimitriou S, Bikiaris D, Avgoustakis K, Karavas E, Georgarakis M (2008) Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr Polym 73:44–54CrossRef Papadimitriou S, Bikiaris D, Avgoustakis K, Karavas E, Georgarakis M (2008) Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr Polym 73:44–54CrossRef
go back to reference Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42CrossRef Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42CrossRef
go back to reference Roque ACA, Bispo S, Pinheiro ARN, Antunes JMA, Gonçalves D, Ferreira HA (2009) Antibody immobilization on magnetic particles. J Mol Recognit 22:77–82CrossRef Roque ACA, Bispo S, Pinheiro ARN, Antunes JMA, Gonçalves D, Ferreira HA (2009) Antibody immobilization on magnetic particles. J Mol Recognit 22:77–82CrossRef
go back to reference Santos DP, Ruiz MA, Gallardo V, Zanoni MVB, Arias JL (2011) Multifunctional antitumor magnetite/chitosan-l-glutamic acid (core/shell) nanocomposites. J Nanopart Res 13:4311–4323CrossRef Santos DP, Ruiz MA, Gallardo V, Zanoni MVB, Arias JL (2011) Multifunctional antitumor magnetite/chitosan-l-glutamic acid (core/shell) nanocomposites. J Nanopart Res 13:4311–4323CrossRef
go back to reference Seo SB, Yang J, Hyung W, Cho E-J, Lee T-I, Song YJ, Yoon H-G, Suh J-S, Huh Y-M, Haam S (2007) Novel multifunctional PHDCA/PEI nano-drug carriers for simultaneous magnetically targeted cancer therapy and diagnosis via magnetic resonance imaging. Nanotechnology 18:1–8CrossRef Seo SB, Yang J, Hyung W, Cho E-J, Lee T-I, Song YJ, Yoon H-G, Suh J-S, Huh Y-M, Haam S (2007) Novel multifunctional PHDCA/PEI nano-drug carriers for simultaneous magnetically targeted cancer therapy and diagnosis via magnetic resonance imaging. Nanotechnology 18:1–8CrossRef
go back to reference Tansik G, Yakar A, Gunduz U (2014) Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery. J Nanopart Res 16:2171–2177CrossRef Tansik G, Yakar A, Gunduz U (2014) Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery. J Nanopart Res 16:2171–2177CrossRef
go back to reference Wang J, Gong C, Wang Y, Wu G (2014) Magnetic nanoparticles with a pH-sheddable layer for antitumor drug delivery. Colloid Surf B 118:218–225CrossRef Wang J, Gong C, Wang Y, Wu G (2014) Magnetic nanoparticles with a pH-sheddable layer for antitumor drug delivery. Colloid Surf B 118:218–225CrossRef
go back to reference Yang J, Lee C-H, Park J, Seo S, Lim E-K, Song YJ, Suh J-S, Yoon H-G, Huh Y-M, Haam S (2007) Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J Mater Chem 17:2695–2699CrossRef Yang J, Lee C-H, Park J, Seo S, Lim E-K, Song YJ, Suh J-S, Yoon H-G, Huh Y-M, Haam S (2007) Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J Mater Chem 17:2695–2699CrossRef
Metadata
Title
Control of doxorubicin release from magnetic Poly(dl-lactide-co-glycolide) nanoparticles by application of a non-permanent magnetic field
Authors
Inês N. Peça
A. Bicho
Rui Gardner
M. Margarida Cardoso
Publication date
01-11-2015
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 11/2015
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-015-3234-8

Other articles of this Issue 11/2015

Journal of Nanoparticle Research 11/2015 Go to the issue

Premium Partners