Skip to main content
Top
Published in: BioControl 5/2023

Open Access 24-08-2023

Control of post-harvest gray mold (Botrytis cinerea) on grape (Vitis vinifera) and tomato (Solanum lycopersicum) using volatile organic compounds produced by Xenorhabdus nematophila and Photorhabdus laumondii subsp. laumondii

Authors: Ignacio Vicente-Díez, Xoaquín Moreira, Victoria Pastor, Mar Vilanova, Alicia Pou, Raquel Campos-Herrera

Published in: BioControl | Issue 5/2023

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Post-harvest fruit and vegetable rot produced by Botrytis cinerea (Helotiales: Sclerotiniaceae) causes significant reductions in food availability and drastically increases economic losses. The use of microbial-based tools for pathogen management holds promise. In particular, volatile organic compounds (VOCs) emitted by microbes (e.g., bacterial compounds) are becoming increasingly more frequent as an alternative to chemical and physical treatments. In this study, we performed three laboratory experiments to investigate the effects of VOCs emitted by two gram-negative entomopathogenic bacteria, Xenorhabdus nematophila, and Photorhabdus laumondii subsp. laumondii, on the infection and growth of the pathogenic mold B. cinerea on post-harvest red grapes and tomatoes. In addition, we evaluated the preventive effects of these bacterial VOCs against pathogens in post-harvest wounded and intact grapes. Overall, VOCs emitted by X. nematophila and P. laumondii limited the lesion area of B. cinerea to 0.5% and 2.2%, respectively, on the grapes. Similarly, VOCs emitted by X. nematophila and P. laumondii limited the lesion area of B. cinerea to 0.5% and 0.02%, respectively, in tomatoes. In addition, the emission of VOCs by both bacteria showed strong preventive fungal effects. In particular, VOCs emitted by P. laumondii reduced to 13% B. cinerea incidence in damaged grapes exposed to VOCs. Moreover, intact grapes exposed to VOCs emitted by X. nematophila and P. laumondii decreased B. cinerea incidence by 33%. This study provides insightful information about a potential novel bacteria-based tool that can be used as an alternative in the integrated control of post-harvest diseases.
Notes
Handling Editor: Jane Debode.

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s10526-023-10212-7.

Introduction

The United Nations Food and Agriculture Organization (FAO) estimates that post-harvest of fruit and vegetables is the highest among all types of food losses, reaching up to 40% (FAO 2019). Recent estimations indicate that loss at the retail and consumer levels in the USA includes 6.7 M kg of fruit and 10.6 M kg of vegetables per year, adding up to a loss of ~ US$ 40,000 million (Buzby et al. 2011; Buzby and Hyman 2012). Storage, transport, and household waste are the most critical loss points in the fruit and vegetable supply chains, owing largely to inadequate use of bulk packaging and management (Watada et al. 1996). These conditions cause abiotic stresses such as extreme temperatures, desiccation, mechanical injury, low O2, and high CO2 percentage that often result in food loss (Toivonen and Hodges 2011). In addition, fruit and vegetables are highly perishable because, once harvested, they can also suffer biotic stresses such as infections of wound-invading necrotrophic pathogens (Sharma et al. 2009) that compromise both quantity and quality (Delgado et al. 2017).
Several chemical and physical tools have been used to reduce post-harvest losses of fruit and vegetables due to fungal pathogen infections, but their efficiency, economic, and environmental costs are intensely debated (Romanazzi et al. 2012; De Simone et al. 2020). For instance, synthetic fungicides have proven to provide long-lasting control of many target plant pathogens and still contribute heavily to disease control in conventional farming (Oliver and Hewitt 2014). However, their widespread use has triggered severe environmental problems due to their persistence in the air, soil, water, and food, as well as the development of pathogen resistance (Narayanasamy 2006; Gyawali and Ibrahim 2014). As a result, European Union (EU), through the European Green Deal, aims at reducing the use of chemical fungicides by half by 2030, recommending their limited application, adopting prevention measures, and pushing non-chemical control methods (European Commission 2020). Alternatively, physical technologies such as variations in temperature, UV-C irradiation, pressure, or changing atmospheric composition can increase fruit and vegetable resistance against abiotic and biotic stresses after harvesting. Although these methods are often considered non-harmful and residue-free emerging technologies, they involve high energy inputs and costs (Usall et al. 2016). Overall, there has been a pressing need for developing environmentally friendly and economical methods for the management of pathogen infections in fruit and vegetables after harvesting.
The use of microbial-based tools for pathogen management can provide new alternatives. In this sense, various defense-related phytohormones, biological elicitors, and non-organic elicitors have been used as biopesticides against plant pathogens and thus might be also useful on detached fruit (Sharma et al. 2009; Poveda 2021). In particular, volatile organic compounds (VOCs) emitted by microbes (e.g., bacteria) are emerging as an alternative to conventional chemical and physical treatments, mostly in circumstances where direct contact between the pathogen and its antagonist is not practical (Tilocca et al. 2020; Poveda 2021). Bacterial VOCs might increase toxicity against fungal pathogens in post-harvest fruit (Mari et al. 2016) and/or induce fruit defense response (Romanazzi et al. 2016). Unfortunately, the mechanisms underlying these antagonistic effects are still poorly understood. In-depth investigations are thus needed to investigate the antifungal activity, efficacy, and preventive effects of bacterial VOCs in controlling pathogen infections in harvested fruit (Cellini et al. 2021).
Grape and wine processing industries yearly generate around 5–9 M kg of solid waste worldwide, which constitutes 20–30% of processed materials (Schieber et al. 2001). Likewise, tomato is the second most consumed vegetable in the world (Savatović et al. 2012) and its industrial processing generates a considerable amount of waste (10–30% of their raw weight; Rahmatnejad et al. 2009). A critical problem in these industries is the losses and waste generated by post-harvest fungal pathogens due to the lack of proper handling methods and infrastructure (Calicioglu et al. 2019).
The gram-negative entomopathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. produce a huge range of bioactive compounds (peptides, polyketides, and toxins) with antibacterial (Böszörményi et al. 2009; Muangpat et al. 2020), antifungal (Fang et al. 2011, 2014; Chacón-Orozco et al. 2020; Alforja et al. 2021; Cimen et al. 2021; Li et al. 2021), insecticidal (ffrench-Constant et al. 2007; Vitta et al. 2018; Vicente-Díez et al. 2021a, b) and nematicidal (Kusakabe et al. 2021; Abebew et al. 2022) activity. However, the application of these bacterial VOCs to reduce the impact of fungal pathogens has been poorly explored, and their practical use is at an early stage (Crawford et al. 2012; Flórez et al. 2015; Kajla et al. 2019). In this study, we investigated the effects of VOCs emitted by Xenorhabdus nematophila and Photorhabdus laumondii subsp. laumondii on the infection and growth of the pathogenic mold Botrytis cinerea on post-harvest red grapes and tomatoes. In addition, we evaluated the preventive effects of these bacterial VOCs against this pathogen in post-harvest wounded and intact grapes. Overall, this study contributes to a better understanding of the effects of these bacterial VOCs on one pathogen infection in two post-harvest fruit systems, illustrating the potential of this new tool to reduce post-harvest losses in the context of current global agriculture and economy.

Materials and methods

Bacteria isolation and volatiles organic compounds generation

We isolated X. nematophila (region 16S rDNA, GenBank accession number MW574906) and P. laumondii subsp. laumondii (region 16S rDNA, GenBank accession number OQ285858) from their symbiotic entomopathogenic nematode (EPNs) (Supplementary Material 1, Table S1) as described by Vicente-Díez et al. (2021a). We inoculated bacterial strains on Petri dishes with Nutrient Agar (NA), Bromothymol blue (Alfa Aesar, Kandel, Germany), and 2,3,5-Triphenyl tetrazolium chloride (TTC, VWR, Chemicals, Barcelona, Spain) (NBTA plates). We ensured to use the bacteria in the primary and active form based on dye adsorption, pigmentation, and morphology, as described Han and Ehlers (2001). We refreshed the bacteria weekly into another NBTA plate. To ensure the purity and activity for all the experimental trials, we observed the bacterial movement in the microscope and plated in new NBTA dishes, confirming morphology and uniformity.
We obtained natural VOCs derived from X. nematophila and P. laumondii subsp. laumondii by inoculating one single bacteria colony from the NBTA plates in 500 ml Erlenmeyer flasks with 250 ml of Triptone Soya Broth (TSB) (VWR Chemicals, Barcelona, Spain). We incubated the flasks on an orbital shaker at 150 rpm and 25 ± 2 °C in darkness for three days until reaching the saturation of the medium. We verify the purity and activity of the ferments by checking the normal movement of the bacteria under the microscope and ensuring normal growth in NBTA plates. Although some secondary metabolites are produced during the exponential phase, the secondary metabolism is generally activated during the post-exponential or stationary phase of the bacterial growth (Clarke 2016). For that reason, we kept the bacterial ferments inside the Erlenmeyer flask at room temperature, without agitation, close and in darkness condition. We used the VOCs produced at the third day.

Botrytis cinerea isolation and identification

We isolated the strain of B. cinerea from a contaminated grape cluster in the wine region of La Rioja, Spain and transferred to Potato Dextrose Agar (PDA) (VWR, Leuven, Belgium) medium. For the bioassays, we prepared conidia following standardized protocols (Supplementary Material 2). We stored the pathogen strain at − 80 °C in glycerol (25%). Furthermore, we confirmed identification as B. cinerea by molecular tools following the approach described by Bueno-Pallero et al. (2020). We compared the ITS1 genetic region sequences using Blast (http://​blast.​ncbi.​nlm.​nih.​gov) and those submitted to GenBank (Accession number MZ544643).

Antifungal activity of VOCs emitted by bacteria

We evaluated the effects of VOCs emitted by both bacteria (X. nematophila and P. laumondii subsp. laumondii) on the mycelial growth of B. cinerea. We used the double plate method (Fig. 1a) as a proof of concept bioassay (Raymaekers et al. 2020). Briefly, in the top-plate (55 mm diam. Petri dish) we applied 6 µl of B. cinerea 1 × 107 conidia ml−1 of Gamborg B-5 (Sigma-Aldrich, St. Louis, MO, USA) solution in the middle of 6 ml of PDA medium. In the base-plate, we added 5 ml of Xenorhabdus and Photorhabdus three days-old TSB ferments. Consequently, we exposed the pathogen fungus to the VOCs generated by the bacteria without physical contact. Control treatments were distilled water and TSB in the base-plate instead of each of the bacterial ferments. Each treatment comprised fifteen replicates and we conducted the same experiment twice, with new material, ferment and fungus preparation. We incubated all the experimental units at 60% RH, 22 ± 1 °C, and a 16:8 L:D photoperiod for four days. We daily recorded colony diameters (cross directions) until the control treatment covered 100% of the medium surface inside the dish (four days after pathogen infection).
To analyze the antifungal activity of bacterial VOCs on B. cinerea, first, we tested the goodness of fit against normal distribution, and then, we performed a one-way ANOVA with four levels (distilled water control, TSB control, X. nematophila ferment, and P. laumondii subsp. laumondii ferment) on the diameter of B. cinerea colonies two and four days after pathogen inoculation. We subsequently conducted a post-hoc multiple comparison test using Tukey’s method at a significance level of 5%. We performed these analyses with SPSS 25.0 (SPSS Statistics, SPSS Inc., Chicago, IL, USA).

Efficacy of VOCs emitted by bacteria in controlling pathogen infection in grapes and tomatoes

We randomly collected ripe red grapes (Vitis vinifera cv. Tempranillo) and tomatoes (Solanum lycopersicum cv. Sweet Million) from an organic field located in Logroño (La Rioja, Spain, 42° 29′ 14″ N, 2° 30′ 7″ W). We cultured both fruits under organic management and without applying any pre-harvest fungicide treatments. We selected intact, healthy, and homogenous fruit and randomly assigned them to different treatments. Before inoculation and treatment application, we disinfected the fruit surface by dipping them in 3% (v/v) of sodium hypochlorite (NaOCl) solution for 1 min, washed them with distilled water and then air-dried them for ~ 2 h. We performed artificial wounding using a sterile pipette tips to make 5 mm deep and 3 mm wide wounds (one wound for each grape or tomato) along the berry equatorial areas. We inoculated each wound with 6 µl drop of 1 × 107 conidia ml−1 of B. cinerea. We placed grape berries and tomatoes on plastic packaging trays over 7 mm net (Figs. 2a, 3a). Below each net with fruit. For the grapevine experiment, we included a 90 mm diameter Petri dish with 10 ml of three days ferment X. nematophila or P. laumondii subsp. laumondii TSB ferments (Fig. 2a). In the case of the tomatoes, we included a container (40 mm high × 90 mm diam.) filled with 25 ml of the same ferments (Fig. 3a). In both experiments, we used TSB as control. To create a humid environment, we placed 5 ml of distilled water on cavity trays. We incubated the trays on orbital shaking 60 rpm at 22 °C and 95% RH in darkness during four days after pathogen application to provide favorable conditions for the post-harvest onset of the disease. We evaluated diseases incidence (fungal infection or not) for all the treatments in fifteen grape fruit (three groups with five grapes) and eight tomatoes (two groups of four cherries), and we conducted the same experiment twice (for a total of 30 and 16 fruit per treatment, respectively). We simultaneously assessed the relative lesion area (mm2) by measuring the fungus growth area and the total fruit area using image analysis with Image J® program (v. 1.50i, MD, USA) four days after pathogen inoculation (Vicente-Díez et al. 2023).
To investigate the efficacy of bacterial VOCs over the incidence and the severity of B. cinerea infection in grapes and tomatoes, first, we tested the goodness of fit against normal distribution, and then, we performed a one-way ANOVA testing for the effect of bacterial VOCs (three levels: TSB control, X. nematophila ferment and P. laumondii subsp. laumondii ferment) on the percentage of fruit infected and the relative measure of the fungal growth four days after pathogen infection. We subsequently conducted a post-hoc multiple comparison test using Tukey’s method at a significance level of 5%. In the case of the relative lesion area, we firstly transformed percentage data using the arcsine transformation to meet normality. We performed these analyses with SPSS 25.0.

Preventive effect of VOCs emitted by bacteria in controlling pathogen infection in wounded and intact grapes

We performed the subsequent studies only in grape as a proof of concept approach. We arranged surface-disinfected red grapes in plastic trays over a wire net above 10 ml of three days bacterial ferments placed in 90 mm Petri dish (without physical contact). For each approach (wounded or intact grapes), the experimental design was as described in section “Efficacy of VOCs emitted by bacteria in controlling pathogen infection in grapes and tomatoes”, using fifteen grape fruit (three groups with five grapes) per treatment and conducting the same experiment twice (for a total of 30 fruit per treatment, respectively). To evaluate the preventive effect of bacterial VOCs on damaged grapes, we made the wounds as described in the section “Efficacy of VOCs emitted by bacteria in controlling pathogen infection in grapes and tomatoes”. Then, we arrange the grapes inside the plastic trays with the bacterial ferments (Fig. 4a). We did not wound grapes in the preventive effect bioassays with intact grapes (Fig. 5a). We exposed all grapes to bacterial volatiles at 60 rpm orbital agitation, with a 16:8 L:D photoperiod and 22 °C for 72 h. After VOCs exposure, we removed the bacterial ferment and placed a piece of 1 cm3 of four-day-old B. cinerea active culture in the base plate (Figs. 4b, 5b). We kept high RH inside of the plastic packing by adding 5 ml of distilled water in the base of the plastic tray. For the bioassay with intact grapes, we wounded the grapes at this time to facilitate disease incidence. We assessed disease incidence by counting the number of infected grapes and the disease severity using an 1-to-4 ordinal scale following Parafati et al. (2015), slightly modified. The diseases severity scale was: 1 (no visible symptoms: 0%); 2 (soft rot: ≤ 25%); 3 (mycelial growth: 25–75%); and, 4 (sporulation: > 75%) (see Supplementary Material 3). As described by Parafati et al. (2015), we calculated average fruit disease severity for its graphical representation. The final value was expressed as percentage as in Parafati et al. (2015). We collected all data four days after pathogen infection.
To investigate the preventive efficacy of bacterial VOCs over the incidence of B. cinerea infection in wounded and intact grapes, first, we tested the goodness of fit against normal distribution. Thereafter, we ran a one-way ANOVA testing for the effect of bacterial VOCs (three levels: TSB control, X. nematophila ferment and P. laumondii subsp. laumondii ferment) on the percentage of infected grapes four days after pathogen infection. We subsequently conducted a post-hoc multiple comparison test using Tukey’s method at a significance level of 5% (SPSS Statistics 25.0).

Results

Antifungal activity of VOCs emitted by bacteria

Volatile organic compounds emitted by three-days-old bacterial ferments significantly affected the mycelial growth of B. cinerea two (F3,116 = 68.69, P < 0.001) and four (F3,116 = 167.50, P < 0.001) days after pathogen infection. In particular, we found that VOCs emitted by X. nematophila and P. laumondii subsp. laumondii (vs. control) reduced B. cinerea colony diameter to 41% and 44%, respectively, in two days, reaching a reduction of 56% and 60%, respectively after four days (Fig. 1b).

Efficacy of VOCs emitted by bacteria in controlling pathogen infection in grapes and tomatoes

Volatile organic compounds emitted by three-days-old bacterial ferments significantly reduced B. cinerea incidence compared with TSB control (F2,87 = 28.03, P < 0.001) and the relative lesion damage in red grapes four days after infection (F2,87 = 96.24, P < 0.001). In particular, VOCs emitted by X. nematophila and P. laumondii subsp. laumondii (vs. control) limited the disease incidence on grapes to 27% and 47%, respectively (Fig. 2b). Similarly, VOCs emitted by X. nematophila and P. laumondii subsp. laumondii (vs. control) reduced 99% and 94%, respectively, the relative lesion area on grapes (Fig. 2c).
In tomatoes, the three-days-old X. nematophila and P. laumondii subsp. laumondii TSB ferments significantly reduced B. cinerea incidence compared by control by 50% and 94%, respectively (F2,45 = 32.09, P < 0.001) (Fig. 3b). Also, the relative lesion damage in tomatoes was reduced 75% and 99%, respectively, four days after pathogen infection (F2,45 = 33.61, P < 0.001) (Fig. 3c).

Preventive effect of VOCs emitted by bacteria in controlling pathogen infection in grapes

We tested the preventive effect of the bacterial ferments using wounded and intact red grapes. Volatile organic compounds emitted by X. nematophila and P. laumondii subsp. laumondii significantly reduced B. cinerea incidence on harvested wounded grapes compared to the TSB control treatment four days after pathogen infection (F2,87 = 21.16, P < 0.001). We found that VOCs emitted by X. nematophila and P. laumondii subsp. laumondii (vs. control) reduced 44 and 84% of B. cinerea incidence on wounded grapes after four days of pathogen infection, respectively (Fig. 4c). In addition, although disease severity increased over time, the preventive treatment with bacterial VOCs reduced significantly the overall disease severity on wounded grapes compared to the TSB control treatment four days after pathogen infection (P < 0.001). In particular, VOCs emitted by X. nematophila and P. laumondii subsp. laumondii (vs. control) kept 65% and 80% of the grapes without B. cinerea symptoms until four days after pathogen infection (Fig. 4d).
We tested also the possible changes in the fruit modulated by the bacterial ferments using intact grapes. The VOCs emitted by bacteria significantly decreased B. cinerea incidence on intact grapes four days after pathogen infection (F2,87 = 14.73, P < 0.001). In particular, VOCs emitted by X. nematophila and P. laumondii subsp. laumondii (vs. control) reduced 82 and 62% B. cinerea incidence on healthy grapes four days after pathogen infection, respectively (Fig. 5c). In addition, bacterial VOCs significantly reduced B. cinerea severity on intact grapes four days after pathogen infection (P < 0.001). In particular, VOCs emitted by X. nematophila and P. laumondii subsp. laumondii (vs. control) kept 90 and 65% of the grapes without B. cinerea symptoms four days after pathogen infection, respectively (Fig. 5d).

Discussion

Soil-dwelling bacteria X. nematophila and P. laumondii subsp. laumondii emitted VOCs with antifungal activity against the saprophytic pathogen B. cinerea. This property has a great potential to control B. cinerea in harvested red grapes and tomatoes if fruit quality is not affected. Furthermore, our results showed that B. cinerea had less incidence and growth on grapes if treated with these compounds previous to the fungal attack, suggesting that the bacterial VOCs might modulate changes in the fruit that can trigger better resistance to fungal infection. Despite the presence of a high concentration of CO2 might also contribute to reducing the growth of the fungus (Teles et al. 2014), a recent study by Kong et al. (2022) revealed that a rich and complex blend of VOCs emitted by Xenorhabdus and Photorhabdus, potentially also similar to that produced by our bacterial strains, contributes to the inhibition of growth and reducing the damage caused by fungal attack. Although promising, still, the subsequent development and scale-up of this novel bacteria-based tool are required to provide an economical alternative in the integrated control of post-harvest diseases that might contribute to reducing the amount and number of chemical fungicide applications during the food supply chain.
The VOCs emitted by X. nematophila and P. laumondii subsp. laumondii TSB ferments inhibited > 60% of B. cinerea mycelial growth in in vitro tests. As far as we know, this study is the first showing an inhibitory effect of VOCs emitted by X. nematophila and P. laumondii subsp. laumondii TSB ferment using a dual plate system to create a medium without contact between the pathogen and the biological control agent (Raymaekers et al. 2020). Previous work by Chacón-Orozco et al. (2020) found that Xenorhabdus szentirmaii produces secondary metabolites with inhibitory effects on the mycelial growth of the phytopathogenic fungi Sclerotinia sclerotiorum. However, their methodology did not create a medium without contact between the bacterial secreted metabolites and the pathogen and, therefore, it cannot be proven that the effect was due to VOCs as we showed in our experiments.
Traditionally, many studies on the antimicrobial activities of Xenorhabdus spp. and Photorhabdus spp. secondary metabolites have been performed through in vitro assays with nutrient medium (Fang et al. 2011; Lai et al. 2020). These assays often over- or under-estimate antifungal activity compared with in vivo tests working with harvested fruit. Pathogenic infection is a well-regulated phenomenon that requires cross-talk between the host (fruit or vegetables) and the pathogen through signals located on the external surfaces of cells (Raymaekers et al. 2020). The disturbance of cell membranes by antifungal compounds often leads to interference with such signals, which could eventually fail a fungal infection. For this reason, results might drastically differ depending on whether they are performed on an artificial medium or on natural fruit. Our test in harvested fruit (red grapes and tomatoes) showed that the VOCs emitted by X. nematophila and P. laumondii subsp. laumondii TSB ferments drastically reduced the incidence and growth of B. cinerea. Although the possible mechanisms producing such an effect would require further research, Lai et al. (2020) observed that the application of Photorhabdus luminescens enhanced the defensive mechanism and non-enzymatic antioxidant system of detached litchi, delaying the browning and the decay of the fruit (Lai et al. 2020). Therefore, it is plausible that, in our study, X. nematophila and P. laumondii subsp. laumondii can follow similar routes that will require further transcriptomic, metabolomic, and enzymatic experiments to confirm the exact mechanisms.
As with the wounded grape evaluation, we found that both intact and wounded grapes treated previously with the bacterial ferment drastically reduced B. cinerea infection. Still, the mechanisms involved in this phenotype remain unknown. One possibility might be that the VOCs can induce a response in the fruit defenses. Indeed, plant hormones, plant extracts, microorganisms, and abiotic stimulants activate defense responses in grapes against B. cinerea infection (Jacometti et al. 2010; Romanazzi et al. 2016). In particular, different microbial biological control agents (e.g., Filamentous fungi from the genera Trichoderma, Ulocladium, and Gliocladium; bacteria from the genera Bacillus and Pseudomonas; and yeasts from the genera Pichia and Candida) have been reported to increase fruit resistance against post-harvest diseases (Spadaro and Droby 2016; Dukare et al. 2019).
The use of Xenorhabdus or Photorhabdus is still in its infancy due to their phenotypic and phase variation complexity (Han and Ehlers 2001; Clarke 2016; Dominelli et al. 2022). More widespread is the use of their secondary metabolites, earned by the filtration of the bacterial ferments in different medium cultures to reduce the growth of fruit fungal phytopathogens (Yang et al. 2011; Fang et al. 2014; Hazir et al. 2016). Among the diverse array of bioactive metabolites produced by beneficial microorganisms, bacterial VOCs are getting a potential applied interest due to their broad range of positive effects (easy renewability, biodegradability, great diversity of compounds, non-toxicity) on plant and fruit resistance (Parafati et al. 2015; Mari et al. 2016; Cellini et al. 2021), as well as the restrictions on the widespread use of synthetic fungicides (Mari et al. 2016). So far, this study showed that soil-dwelling nematode symbionts Xenorhabdus and Photorhabdus can be explored as beneficial microorganisms to control post-harvest fruit decay. Our future research will be aimed at identifying the specific VOCs emitted by X. nematophila and P. laumondii subsp. laumondii responsible for this antifungal activity, as well as unraveling how these VOCs might lead to modulating the post-harvest fruit at the level of secondary metabolism.

Acknowledgements

The authors thank Elisabet Vaquero Jiménez for her invaluable assistance in the laboratory, and members of Biovitis Lab and VitisGen (ICVV) for kindly sharing their equipment. The pre-doctoral contract FPI-UR 2021 (University of La Rioja) support IVD. Similarly, RCH received the Grant RYC-2016-19939 funded by MCIN/AEI/ 10.13039/501100011033 and “ESF Investing in your future”. This study was also funded by the Ministry of Science and Innovation, Grant PID2019-104112RB-I00 (MCIN/AEI/10.13039/50110001103).

Declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Patent

The results presented herein are part of the patent entitled “Volatile organic compounds obtained from Photorhabdus laumondii subsp. laumondii and uses thereof” (Reference EP23382199).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.
Appendix

Supplementary Information

Below is the link to the electronic supplementary material.
Literature
go back to reference Abebew D, Sayedain FS, Bode E, Bode HB (2022) Uncovering nematicidal natural products from Xenorhabdus bacteria. J Agric Food Chem 70:498–506PubMedPubMedCentral Abebew D, Sayedain FS, Bode E, Bode HB (2022) Uncovering nematicidal natural products from Xenorhabdus bacteria. J Agric Food Chem 70:498–506PubMedPubMedCentral
go back to reference Alforja SIR, Rico PMB, Caoili BL, Latina RA (2021) Two Philippine Photorhabdus luminescens strains inhibit the in vitro growth of Lasiodiplodia theobromae, Fusarium oxysporum f. sp. lycopersici, and Colletotrichum spp. Egypt J Biol Pest Control 31:108 Alforja SIR, Rico PMB, Caoili BL, Latina RA (2021) Two Philippine Photorhabdus luminescens strains inhibit the in vitro growth of Lasiodiplodia theobromae, Fusarium oxysporum f. sp. lycopersici, and Colletotrichum spp. Egypt J Biol Pest Control 31:108
go back to reference Böszörményi E, Érsek T, Fodor A, Fodor AM, Földes LS, Hevesi M, Hogan JS, Katona Z, Klein MG, Kormány A, Pekár S, Szentirmai A, Sztaricskai F, Taylor RAJ (2009) Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. J Appl Microbiol 107:746–759PubMed Böszörményi E, Érsek T, Fodor A, Fodor AM, Földes LS, Hevesi M, Hogan JS, Katona Z, Klein MG, Kormány A, Pekár S, Szentirmai A, Sztaricskai F, Taylor RAJ (2009) Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. J Appl Microbiol 107:746–759PubMed
go back to reference Bueno-Pallero FA, Blanco-Pérez R, Vicente-Díez I, Rodríguez Martín JA, Dionísio L, Campos-Herrera R (2020) Patterns of occurrence and activity of entomopathogenic fungi in The Algarve (Portugal) using different isolation methods. Insects 11:352 Bueno-Pallero FA, Blanco-Pérez R, Vicente-Díez I, Rodríguez Martín JA, Dionísio L, Campos-Herrera R (2020) Patterns of occurrence and activity of entomopathogenic fungi in The Algarve (Portugal) using different isolation methods. Insects 11:352
go back to reference Buzby JC, Hyman J (2012) Total and per capita value of food loss in the United States. Food Policy 37:561–570 Buzby JC, Hyman J (2012) Total and per capita value of food loss in the United States. Food Policy 37:561–570
go back to reference Buzby JC, Hyman J, Stewart H, Wells HF (2011) The value of retail- and consumer-level fruit and vegetable losses in the United States. J Consum Aff 45:492–515 Buzby JC, Hyman J, Stewart H, Wells HF (2011) The value of retail- and consumer-level fruit and vegetable losses in the United States. J Consum Aff 45:492–515
go back to reference Calicioglu O, Flammini A, Bracco S, Bellù L, Sims R (2019) The future challenges of food and agriculture: an integrated analysis of trends and solutions. Sustainability 11:222 Calicioglu O, Flammini A, Bracco S, Bellù L, Sims R (2019) The future challenges of food and agriculture: an integrated analysis of trends and solutions. Sustainability 11:222
go back to reference Cellini A, Spinelli F, Donati I, Ryu CM, Kloepper JW (2021) Bacterial volatile compound-based tools for crop management and quality. Trends Plant Sci 26:968–983PubMed Cellini A, Spinelli F, Donati I, Ryu CM, Kloepper JW (2021) Bacterial volatile compound-based tools for crop management and quality. Trends Plant Sci 26:968–983PubMed
go back to reference Chacón-Orozco JG, Bueno CJ, Shapiro-Ilan DI, Hazir S, Leite LG, Harakava R (2020) Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum. Sci Rep 10:20649PubMedPubMedCentral Chacón-Orozco JG, Bueno CJ, Shapiro-Ilan DI, Hazir S, Leite LG, Harakava R (2020) Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum. Sci Rep 10:20649PubMedPubMedCentral
go back to reference Cimen H, Touray M, Gulsen SH, Erincik O, Wenski SL, Bode HB, Shapiro-Ilan D, Hazir S (2021) Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii. Appl Microbiol Biotechnol 105:5517–5528PubMed Cimen H, Touray M, Gulsen SH, Erincik O, Wenski SL, Bode HB, Shapiro-Ilan D, Hazir S (2021) Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii. Appl Microbiol Biotechnol 105:5517–5528PubMed
go back to reference Clarke DJ (2016) The regulation of secondary metabolism in Photorhabdus. In: Ffrench-Constant R (ed) The molecular biology of Photorhabdus bacteria. Current topics in microbiology and immunology, vol 402. Springer, Cham, pp 81–102 Clarke DJ (2016) The regulation of secondary metabolism in Photorhabdus. In: Ffrench-Constant R (ed) The molecular biology of Photorhabdus bacteria. Current topics in microbiology and immunology, vol 402. Springer, Cham, pp 81–102
go back to reference Crawford JM, Portmann C, Zhang X, Roeffaers MB, Clardy J (2012) Small molecule perimeter defense in entomopathogenic bacteria. Proc Natl Acad Sci USA 109:10821–10826PubMedPubMedCentral Crawford JM, Portmann C, Zhang X, Roeffaers MB, Clardy J (2012) Small molecule perimeter defense in entomopathogenic bacteria. Proc Natl Acad Sci USA 109:10821–10826PubMedPubMedCentral
go back to reference De Simone N, Pace B, Grieco F, Chimienti M, Tyibilika V, Santoro V, Capozzi V, Colelli G, Spano G, Russo P (2020) Botrytis cinerea and table grapes: a review of the main physical, chemical, and bio-based control treatments in post-harvest. Foods 9(9):1138PubMedPubMedCentral De Simone N, Pace B, Grieco F, Chimienti M, Tyibilika V, Santoro V, Capozzi V, Colelli G, Spano G, Russo P (2020) Botrytis cinerea and table grapes: a review of the main physical, chemical, and bio-based control treatments in post-harvest. Foods 9(9):1138PubMedPubMedCentral
go back to reference Dominelli N, Jäger HY, Langer A, Brachmann A, Heermann R (2022) High-throughput sequencing analysis reveals genomic similarity in phenotypic heterogeneous Photorhabdus luminescens cell populations. Ann Microbiol 72:20 Dominelli N, Jäger HY, Langer A, Brachmann A, Heermann R (2022) High-throughput sequencing analysis reveals genomic similarity in phenotypic heterogeneous Photorhabdus luminescens cell populations. Ann Microbiol 72:20
go back to reference Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, Sharma K, Vishwakarma RK (2019) Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit Rev Food Sci Nutr 59:1498–1513PubMed Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, Sharma K, Vishwakarma RK (2019) Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit Rev Food Sci Nutr 59:1498–1513PubMed
go back to reference European Commission (2020) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A farm to Fork Strategy for a fair, healthy and environmentally-friendly food system COM/2020/381 final European Commission (2020) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A farm to Fork Strategy for a fair, healthy and environmentally-friendly food system COM/2020/381 final
go back to reference Fang XL, Li ZZ, Wang YH, Zhang X (2011) In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. J Appl Microbiol 111:145–154PubMed Fang XL, Li ZZ, Wang YH, Zhang X (2011) In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. J Appl Microbiol 111:145–154PubMed
go back to reference Fang X, Zhang M, Tang Q, Wang Y, Zhang X (2014) Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta. Sci Rep 4:4300PubMedPubMedCentral Fang X, Zhang M, Tang Q, Wang Y, Zhang X (2014) Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta. Sci Rep 4:4300PubMedPubMedCentral
go back to reference FAO (2019) The state of food and agriculture 2019. Moving forward on food loss and waste reduction. FAO, Rome. Licence: CC BY-NC-SA 3.0 IGO FAO (2019) The state of food and agriculture 2019. Moving forward on food loss and waste reduction. FAO, Rome. Licence: CC BY-NC-SA 3.0 IGO
go back to reference ffrench-Constant RH, Dowling A, Waterfield NR (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49:436–451PubMed ffrench-Constant RH, Dowling A, Waterfield NR (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49:436–451PubMed
go back to reference Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M (2015) Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 32:904–936PubMed Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M (2015) Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 32:904–936PubMed
go back to reference Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429 Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429
go back to reference Han R, Ehlers RU (2001) Effect of Photorhabdus luminescens phase variants on the in vivo and in vitro development and reproduction of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae. FEMS Microbiol Ecol 35:239–247PubMed Han R, Ehlers RU (2001) Effect of Photorhabdus luminescens phase variants on the in vivo and in vitro development and reproduction of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae. FEMS Microbiol Ecol 35:239–247PubMed
go back to reference Hazir S, Shapiro-Ilan DI, Bock CH, Hazir C, Leite LG, Hotchkiss MW (2016) Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens. Eur J Plant Pathol 146:369–381 Hazir S, Shapiro-Ilan DI, Bock CH, Hazir C, Leite LG, Hotchkiss MW (2016) Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens. Eur J Plant Pathol 146:369–381
go back to reference Jacometti MA, Wratten SD, Walter M (2010) Review: alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Aust J Grape Wine Res 16:154–172 Jacometti MA, Wratten SD, Walter M (2010) Review: alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Aust J Grape Wine Res 16:154–172
go back to reference Kajla MK, Barrett-Wilt GA, Paskewitz SM (2019) Bacteria: a novel source for potent mosquito feeding-deterrents. Sci Adv 5:eaau6141PubMedPubMedCentral Kajla MK, Barrett-Wilt GA, Paskewitz SM (2019) Bacteria: a novel source for potent mosquito feeding-deterrents. Sci Adv 5:eaau6141PubMedPubMedCentral
go back to reference Kong X-X, Tang R, Liao C-M, Wang J, Dai K, Tang Z, Han R-C, Jin Y-L, Cao L (2022) A novel volatile deterrent from symbiotic bacteria of entomopathogenic nematodes fortifies field performances of nematodes against fall armyworm larvae. Pestic Biochem Physiol 188:105286PubMed Kong X-X, Tang R, Liao C-M, Wang J, Dai K, Tang Z, Han R-C, Jin Y-L, Cao L (2022) A novel volatile deterrent from symbiotic bacteria of entomopathogenic nematodes fortifies field performances of nematodes against fall armyworm larvae. Pestic Biochem Physiol 188:105286PubMed
go back to reference Kusakabe A, Wang C, Xu Y, Molnár I, Stock SP (2021) Selective toxicity of secondary metabolites from the entomopathogenic bacterium Photorhabdus luminescens sonorensis against plant parasitic nematodes of the Tylenchina Suborder. Microbiol Spectr 10(1):e02577-e2621 Kusakabe A, Wang C, Xu Y, Molnár I, Stock SP (2021) Selective toxicity of secondary metabolites from the entomopathogenic bacterium Photorhabdus luminescens sonorensis against plant parasitic nematodes of the Tylenchina Suborder. Microbiol Spectr 10(1):e02577-e2621
go back to reference Lai D, Shao X, Xiao W, Fan C, Liu C, He H, Tian S, Kuang S (2020) Suppression of fruit decay and maintenance of storage quality of litchi by Photorhabdus luminescens Hb1029 treatment. Sci Hortic (Amsterdam) 259:108836 Lai D, Shao X, Xiao W, Fan C, Liu C, He H, Tian S, Kuang S (2020) Suppression of fruit decay and maintenance of storage quality of litchi by Photorhabdus luminescens Hb1029 treatment. Sci Hortic (Amsterdam) 259:108836
go back to reference Li B, Kong L, Qiu D, Francis F, Wang S (2021) Biocontrol potential and mode of action of entomopathogenic bacteria Xenorhabdus budapestensis C72 against Bipolaris maydis. Biol Control 158:104605 Li B, Kong L, Qiu D, Francis F, Wang S (2021) Biocontrol potential and mode of action of entomopathogenic bacteria Xenorhabdus budapestensis C72 against Bipolaris maydis. Biol Control 158:104605
go back to reference Mari M, Bautista-Baños S, Sivakumar D (2016) Decay control in the postharvest system: role of microbial and plant volatile organic compounds. Postharvest Biol Technol 122:70–81 Mari M, Bautista-Baños S, Sivakumar D (2016) Decay control in the postharvest system: role of microbial and plant volatile organic compounds. Postharvest Biol Technol 122:70–81
go back to reference Muangpat P, Suwannaroj M, Yimthin T, Fukruksa C, Sitthisak S, Chantratita N, Vitta A, Thanwisai A (2020) Antibacterial activity of Xenorhabdus and Photorhabdus isolated from entomopathogenic nematodes against antibiotic-resistant bacteria. PLoS ONE 15(6):e0234129PubMedPubMedCentral Muangpat P, Suwannaroj M, Yimthin T, Fukruksa C, Sitthisak S, Chantratita N, Vitta A, Thanwisai A (2020) Antibacterial activity of Xenorhabdus and Photorhabdus isolated from entomopathogenic nematodes against antibiotic-resistant bacteria. PLoS ONE 15(6):e0234129PubMedPubMedCentral
go back to reference Narayanasamy P (2006) Postharvest pathogens and disease management. Academia Edu, Wiley, Hoboken Narayanasamy P (2006) Postharvest pathogens and disease management. Academia Edu, Wiley, Hoboken
go back to reference Oliver RP, Hewitt HG (2014) Fungicides in crop protection. CAB International, Boston Oliver RP, Hewitt HG (2014) Fungicides in crop protection. CAB International, Boston
go back to reference Parafati L, Vitale A, Restuccia C, Cirvilleri G (2015) Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol 47:85–92PubMed Parafati L, Vitale A, Restuccia C, Cirvilleri G (2015) Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol 47:85–92PubMed
go back to reference Poveda J (2021) Beneficial effects of microbial volatile organic compounds (MVOCs) in plants. Appl Soil Ecol 168:104118 Poveda J (2021) Beneficial effects of microbial volatile organic compounds (MVOCs) in plants. Appl Soil Ecol 168:104118
go back to reference Rahmatnejad E, Bojarpour M, Mirzadeh K, Chaji M, Mohammadabadi T (2009) The effects of different levels of dried tomato pomace on broilers chicken hematological indices. J Anim Vet Adv 8:1989–1992 Rahmatnejad E, Bojarpour M, Mirzadeh K, Chaji M, Mohammadabadi T (2009) The effects of different levels of dried tomato pomace on broilers chicken hematological indices. J Anim Vet Adv 8:1989–1992
go back to reference Raymaekers K, Ponet L, Holtappels D, Barbara C, Bruno PA (2020) Screening for novel biocontrol agents applicable in plant disease management—a review. Biol Control 144:104240 Raymaekers K, Ponet L, Holtappels D, Barbara C, Bruno PA (2020) Screening for novel biocontrol agents applicable in plant disease management—a review. Biol Control 144:104240
go back to reference Romanazzi G, Lichter A, Gabler FM, Smilanick JL (2012) Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biol Technol 63:141–147 Romanazzi G, Lichter A, Gabler FM, Smilanick JL (2012) Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biol Technol 63:141–147
go back to reference Romanazzi G, Sanzani SM, Bi Y, Tian S, Gutiérrez Martínez P, Alkan N (2016) Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol Technol 122:82–94 Romanazzi G, Sanzani SM, Bi Y, Tian S, Gutiérrez Martínez P, Alkan N (2016) Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol Technol 122:82–94
go back to reference Savatović S, Ćetković G, Čanadanović-Brunet J, Djilas S (2012) Tomato waste: a potential source of hydrophilic antioxidants. Int J Food Sci Nutr 63:129–137PubMed Savatović S, Ćetković G, Čanadanović-Brunet J, Djilas S (2012) Tomato waste: a potential source of hydrophilic antioxidants. Int J Food Sci Nutr 63:129–137PubMed
go back to reference Schieber A, Stintzing FC, Carle R (2001) By-products of plant food processing as a source of valuable compounds. Ref Modul Food Sci 12:401–413 Schieber A, Stintzing FC, Carle R (2001) By-products of plant food processing as a source of valuable compounds. Ref Modul Food Sci 12:401–413
go back to reference Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221 Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221
go back to reference Spadaro D, Droby S (2016) Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol 47:39–49 Spadaro D, Droby S (2016) Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol 47:39–49
go back to reference Teles CS, Benedetti B, Douglas Gubler W, Crisosto CH (2014) Prestorage application of high carbon dioxide combined with controlled atmosphere storage as a dual approach to control Botrytis cinerea in organic ‘Flame Seedless’ and ‘Crimson Seedless’ table grapes. Postharvest Biol Technol 89:32–39 Teles CS, Benedetti B, Douglas Gubler W, Crisosto CH (2014) Prestorage application of high carbon dioxide combined with controlled atmosphere storage as a dual approach to control Botrytis cinerea in organic ‘Flame Seedless’ and ‘Crimson Seedless’ table grapes. Postharvest Biol Technol 89:32–39
go back to reference Tilocca B, Cao A, Migheli Q (2020) Scent of a killer: microbial volatilome and its role in the biological control of plant pathogens. Front Microbiol 11:41PubMedPubMedCentral Tilocca B, Cao A, Migheli Q (2020) Scent of a killer: microbial volatilome and its role in the biological control of plant pathogens. Front Microbiol 11:41PubMedPubMedCentral
go back to reference Toivonen P, Hodges M (2011) Abiotic stress in harvested fruits and vegetables. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants—mechanisms and adaptations. InTech, Rijeka, Croatia, pp 39–58 Toivonen P, Hodges M (2011) Abiotic stress in harvested fruits and vegetables. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants—mechanisms and adaptations. InTech, Rijeka, Croatia, pp 39–58
go back to reference Usall J, Ippolito A, Sisquella M, Neri F (2016) Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biol Technol 122:30–40 Usall J, Ippolito A, Sisquella M, Neri F (2016) Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biol Technol 122:30–40
go back to reference Vicente-Díez I, Blanco-Pérez R, Chelkha M, Puelles M, Pou A, Campos-Herrera R (2021a) Exploring the use of entomopathogenic nematodes and the natural products derived from their symbiotic bacteria to control the grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae). Insects 12:1033PubMedPubMedCentral Vicente-Díez I, Blanco-Pérez R, Chelkha M, Puelles M, Pou A, Campos-Herrera R (2021a) Exploring the use of entomopathogenic nematodes and the natural products derived from their symbiotic bacteria to control the grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae). Insects 12:1033PubMedPubMedCentral
go back to reference Vicente-Díez I, Blanco-Pérez R, del Mar González-Trujillo M, Pou A, Campos-Herrera R (2021b) Insecticidal effect of entomopathogenic nematodes and the cell-free supernatant from their symbiotic bacteria against Philaenus spumarius (Hemiptera: Aphrophoridae) Nymphs. Insects 12:448PubMedPubMedCentral Vicente-Díez I, Blanco-Pérez R, del Mar González-Trujillo M, Pou A, Campos-Herrera R (2021b) Insecticidal effect of entomopathogenic nematodes and the cell-free supernatant from their symbiotic bacteria against Philaenus spumarius (Hemiptera: Aphrophoridae) Nymphs. Insects 12:448PubMedPubMedCentral
go back to reference Vicente-Díez I, Carpentero E, Pou A, Campos-Herrera R (2023) Exploring bacterial cell-free supernatants, unfiltered ferments and crude bacteria uses of Xenorhabdus and Photorhabdus (Morganellaceae) for controlling Botrytis cinerea (Helotiales: Sclerotiniaceae). Biol Control 183:105259 Vicente-Díez I, Carpentero E, Pou A, Campos-Herrera R (2023) Exploring bacterial cell-free supernatants, unfiltered ferments and crude bacteria uses of Xenorhabdus and Photorhabdus (Morganellaceae) for controlling Botrytis cinerea (Helotiales: Sclerotiniaceae). Biol Control 183:105259
go back to reference Vitta A, Thimpoo P, Meesil W, Yimthin T, Fukruksa C, Polseela R, Mangkit B, Tandhavanant S, Thanwisai A (2018) Larvicidal activity of Xenorhabdus and Photorhabdus bacteria against Aedes aegypti and Aedes albopictus. Asian Pac J Trop Biomed 7:31–36 Vitta A, Thimpoo P, Meesil W, Yimthin T, Fukruksa C, Polseela R, Mangkit B, Tandhavanant S, Thanwisai A (2018) Larvicidal activity of Xenorhabdus and Photorhabdus bacteria against Aedes aegypti and Aedes albopictus. Asian Pac J Trop Biomed 7:31–36
go back to reference Watada AE, Ko NP, Minott DA (1996) Factors affecting quality of fresh-cut horticultural products. Postharvest Biol Technol 9:115–125 Watada AE, Ko NP, Minott DA (1996) Factors affecting quality of fresh-cut horticultural products. Postharvest Biol Technol 9:115–125
go back to reference Yang X, Qiu D, Yang H, Liu Z, Zeng H, Yuan J (2011) Antifungal activity of xenocoumacin 1 from Xenorhabdus nematophilus var. pekingensis against Phytophthora infestans. World J Microbiol Biotechnol 27:523–528 Yang X, Qiu D, Yang H, Liu Z, Zeng H, Yuan J (2011) Antifungal activity of xenocoumacin 1 from Xenorhabdus nematophilus var. pekingensis against Phytophthora infestans. World J Microbiol Biotechnol 27:523–528
Metadata
Title
Control of post-harvest gray mold (Botrytis cinerea) on grape (Vitis vinifera) and tomato (Solanum lycopersicum) using volatile organic compounds produced by Xenorhabdus nematophila and Photorhabdus laumondii subsp. laumondii
Authors
Ignacio Vicente-Díez
Xoaquín Moreira
Victoria Pastor
Mar Vilanova
Alicia Pou
Raquel Campos-Herrera
Publication date
24-08-2023
Publisher
Springer Netherlands
Published in
BioControl / Issue 5/2023
Print ISSN: 1386-6141
Electronic ISSN: 1573-8248
DOI
https://doi.org/10.1007/s10526-023-10212-7

Other articles of this Issue 5/2023

BioControl 5/2023 Go to the issue