Skip to main content
Top
Published in: Calcolo 3/2018

01-09-2018

Convergence of a lowest-order finite element method for the transmission eigenvalue problem

Authors: Jessika Camaño, Rodolfo Rodríguez, Pablo Venegas

Published in: Calcolo | Issue 3/2018

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The transmission eigenvalue problem arises in scattering theory. The main difficulty in its analysis is the fact that, depending on the chosen formulation, it leads either to a quadratic eigenvalue problem or to a non-classical mixed problem. In this paper we prove the convergence of a mixed finite element approximation. This approach, which is close to the Ciarlet–Raviart discretization of biharmonic problems, is based on Lagrange finite elements and is one of the less expensive methods in terms of the amount of degrees of freedom. The convergence analysis is based on classical abstract spectral approximation result and the theory of mixed finite element methods for solving the stream function–vorticity formulation of the Stokes problem. Numerical experiments are reported in order to assess the efficiency of the method.
Literature
1.
go back to reference Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991) Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991)
2.
go back to reference Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42(1), 237–255 (2010)MathSciNetCrossRef Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42(1), 237–255 (2010)MathSciNetCrossRef
3.
go back to reference Cakoni, F., Monk, P., Sun, J.: Error analysis for the finite element approximation of transmission eigenvalues. Comput. Methods Appl. Math. 14(4), 419–427 (2014)MathSciNetCrossRef Cakoni, F., Monk, P., Sun, J.: Error analysis for the finite element approximation of transmission eigenvalues. Comput. Methods Appl. Math. 14(4), 419–427 (2014)MathSciNetCrossRef
4.
go back to reference Ciarlet, P.G., Raviart, P.A.: A mixed finite element method for the biharmonic equation. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–145. Academic Press, New York (1974)CrossRef Ciarlet, P.G., Raviart, P.A.: A mixed finite element method for the biharmonic equation. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–145. Academic Press, New York (1974)CrossRef
5.
go back to reference Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Probl. 26(4), Art. 045011 (2010)MathSciNetCrossRef Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Probl. 26(4), Art. 045011 (2010)MathSciNetCrossRef
6.
go back to reference Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)CrossRef Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)CrossRef
7.
go back to reference Han, J., Yang, Y., Bi, H.: A new multigrid finite element method for the transmission eigenvalue problems. Appl. Math. Comput. 292, 96–106 (2017)MathSciNet Han, J., Yang, Y., Bi, H.: A new multigrid finite element method for the transmission eigenvalue problems. Appl. Math. Comput. 292, 96–106 (2017)MathSciNet
8.
go back to reference Ji, X., Sun, J., Turner, T.: Algorithm 922: a mixed finite element method for Helmholtz transmission eigenvalues. ACM Trans. Math. Softw. 38(4), Art. 29 (2012)CrossRef Ji, X., Sun, J., Turner, T.: Algorithm 922: a mixed finite element method for Helmholtz transmission eigenvalues. ACM Trans. Math. Softw. 38(4), Art. 29 (2012)CrossRef
9.
go back to reference Ji, X., Sun, J., Xie, H.: A multigrid method for Helmholtz transmission eigenvalue problems. J. Sci. Comput. 60(2), 276–294 (2014)MathSciNetCrossRef Ji, X., Sun, J., Xie, H.: A multigrid method for Helmholtz transmission eigenvalue problems. J. Sci. Comput. 60(2), 276–294 (2014)MathSciNetCrossRef
10.
go back to reference Ji, X., Xi, Y., Xie, H.: Nonconforming finite element method for the transmission eigenvalue problem. Adv. Appl. Math. Mech. 9(1), 92–103 (2017)MathSciNetCrossRef Ji, X., Xi, Y., Xie, H.: Nonconforming finite element method for the transmission eigenvalue problem. Adv. Appl. Math. Mech. 9(1), 92–103 (2017)MathSciNetCrossRef
11.
go back to reference Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1966)MATH Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1966)MATH
12.
13.
go back to reference Mercier, B., Osborn, J., Rappaz, J., Raviart, P.A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comput. 36(154), 427–453 (1981)MathSciNetCrossRef Mercier, B., Osborn, J., Rappaz, J., Raviart, P.A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comput. 36(154), 427–453 (1981)MathSciNetCrossRef
14.
go back to reference Sun, J.: Estimation of transmission eigenvalues and the index of refraction from Cauchy data. Inverse Probl. 27(1), Art. 015009 (2011)MathSciNetCrossRef Sun, J.: Estimation of transmission eigenvalues and the index of refraction from Cauchy data. Inverse Probl. 27(1), Art. 015009 (2011)MathSciNetCrossRef
15.
16.
go back to reference Yang, Y., Bi, H., Li, H., Han, J.: Mixed methods for the Helmholtz transmission eigenvalues. SIAM J. Sci. Comput. 38(3), A1383–A1403 (2016)MathSciNetCrossRef Yang, Y., Bi, H., Li, H., Han, J.: Mixed methods for the Helmholtz transmission eigenvalues. SIAM J. Sci. Comput. 38(3), A1383–A1403 (2016)MathSciNetCrossRef
17.
go back to reference Yang, Y., Bi, H., Li, H., Han, J.: A \(C^0{\rm IPG}\) method and its error estimates for the Helmholtz transmission eigenvalue problem. J. Comput. Appl. Math. 326, 71–86 (2017)MathSciNetCrossRef Yang, Y., Bi, H., Li, H., Han, J.: A \(C^0{\rm IPG}\) method and its error estimates for the Helmholtz transmission eigenvalue problem. J. Comput. Appl. Math. 326, 71–86 (2017)MathSciNetCrossRef
Metadata
Title
Convergence of a lowest-order finite element method for the transmission eigenvalue problem
Authors
Jessika Camaño
Rodolfo Rodríguez
Pablo Venegas
Publication date
01-09-2018
Publisher
Springer International Publishing
Published in
Calcolo / Issue 3/2018
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-018-0276-1

Other articles of this Issue 3/2018

Calcolo 3/2018 Go to the issue

Premium Partner