Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2019

Open Access 01-12-2019 | Research

\((h-m)\)-convex functions and associated fractional Hadamard and Fejér–Hadamard inequalities via an extended generalized Mittag-Leffler function

Authors: Shin Min Kang, Ghulam Farid, Waqas Nazeer, Sajid Mehmood

Published in: Journal of Inequalities and Applications | Issue 1/2019

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aim of this paper is to present the Hadamard and the Fejér–Hadamard integral inequalities for \((h-m)\)-convex functions due to an extended generalized Mittag-Leffler function. These results contain several fractional integral inequalities for the well-known fractional integral operators. Also results for the generalized Mittag-Leffler function are mentioned.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction and preliminaries

Convexity is very important in the field of mathematical inequalities. It is a basic concept in mathematics, its extensions and generalizations have been defined in various ways by using the different techniques. For example one of them is \((h-m)\)-convexity, which is a generalization of convexity that contains h-convexity, m-convexity, s-convexity defined on the right half of the real line including zero (see [12, 23] and the references therein).
Definition 1
Let \(J\subseteq \mathbb{R}\) be an interval containing \((0,1)\) and let \(h : J\rightarrow \mathbb{R}\) be a non-negative function. We say that \(f :[0,b]\rightarrow \mathbb{R}\) is a \((h-m)\)-convex function, if f is non-negative and, for all \(x,y\in [0,b]\), \(m\in [0,1]\) and \(\alpha \in (0,1)\), one has
$$ f\bigl(\alpha x+m(1-\alpha )y\bigr)\leq h(\alpha )f(x)+mh(1-\alpha )f(y). $$
For suitable choices of h and m, the class of \((h-m)\)-convex functions is reduced to different known classes of convex and related functions defined on \([0,b]\) given in the following remark.
Remark 1
(i)
If \(m=1\), then we get an h-convex function.
 
(ii)
If \(h(\alpha )=\alpha \), then we get an m-convex function.
 
(iii)
If \(h(\alpha )=\alpha \) and \(m=1\), then we get a convex function.
 
(iv)
If \(h(\alpha )=1\) and \(m=1\), then we get a p-function.
 
(v)
If \(h(\alpha )=\alpha ^{s}\) and \(m=1\), then we get an s-convex function in the second sense.
 
(vi)
If \(h(\alpha )=\frac{1}{\alpha }\) and \(m=1\), then we get a Godunova–Levin function.
 
(vii)
If \(h(\alpha )=\frac{1}{\alpha ^{s}}\) and \(m=1\), then we get an s-Godunova–Levin function of the second kind.
 
Convex functions are equivalently defined by the well-known Hadamard inequality stated as follows.
Theorem 1.1
Let \(f:[a,b]\rightarrow \mathbb{R}\) be a convex function such that \(a< b\), then the following inequality holds:
$$\begin{aligned} f \biggl(\frac{a+b}{2} \biggr)\leq \frac{1}{b-a} \int ^{b}_{a}f(x)\,dx \leq \frac{f(a)+f(b)}{2}. \end{aligned}$$
(1)
The Fejér–Hadamard inequality is a weighted version of the Hadamard inequality established by Fejér in [8].
Theorem 1.2
Let \(f:[a, b]\rightarrow \mathbb{R}\) be a convex function and \(g:[a, b]\rightarrow \mathbb{R}\) be a non-negative, integrable and symmetric to \(\frac{a+b}{2}\). Then the following inequality holds:
$$\begin{aligned} &f \biggl(\frac{a+b}{2} \biggr) \int _{a}^{b}g(x)\,dx\leq \int _{a}^{b}f(x)g(x)\,dx \leq \frac{f(a)+f(b)}{2} \int _{a}^{b}g(x)\,dx. \end{aligned}$$
(2)
Many researchers are continuously working on inequalities (1) and (2), and they have produced very interesting results for convex and related functions; for details see [37, 12, 16, 18]. In this paper, we wish to prove the Hadamard and the Fejér–Hadamard type integral inequalities for \((h-m)\)-convex functions via an extended generalized Mittag-Leffler function.
In [1], M. Andrić et al. defined the extended generalized Mittag-Leffler function \(E_{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c}(\cdot;p)\) as follows:
Definition 2
Let \(\mu ,\alpha ,l,\gamma ,c\in \mathbb{C}\), \(\Re (\mu ),\Re (\alpha ),\Re (l)>0\), \(\Re (c)>\Re (\gamma )>0\) with \(p\geq 0\), \(\delta >0\) and \(0< k\leq \delta +\Re (\mu )\). Then the extended generalized Mittag-Leffler function \(E_{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c}(t;p)\) is defined by
$$ E_{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c}(t;p)= \sum _{n=0}^{\infty }\frac{ \beta _{p}(\gamma +nk,c-\gamma )}{\beta (\gamma ,c-\gamma )} \frac{(c)_{nk}}{ \varGamma (\mu n +\alpha )} \frac{t^{n}}{(l)_{n \delta }}, $$
(3)
where \(\beta _{p}\) is the generalized beta function defined by
$$ \beta _{p}(x,y) = \int _{0}^{1}t^{x-1}(1-t)^{y-1}e^{-\frac{p}{t(1-t)}}\,dt $$
and \((c)_{nk}\) is the Pochhammer symbol defined by \((c)_{nk}=\frac{ \varGamma (c+nk)}{\varGamma (c)}\).
Remark 2
Equation (3) is a generalization of the following functions:
(i)
setting \(p=0\), it reduces to the function \(E_{\mu ,\alpha ,l}^{ \gamma ,\delta ,k,c}(t)\) due to Salim et al. defined in [17],
 
(ii)
setting \(l=\delta =1\), it reduces to the function \(E_{\mu , \alpha }^{\gamma ,k,c}(t;p)\) defined by Rahman et al. in [15],
 
(iii)
setting \(p=0\) and \(l=\delta =1\), it reduces to the function \(E_{\mu ,\alpha }^{\gamma ,k}(t)\) due to Shukla et al. defined in [20]; see also [21],
 
(iv)
setting \(p=0\) and \(l=\delta =k=1\), it reduces to the Prabhakar function \(E_{\mu ,\alpha }^{\gamma }(t)\) defined in [14].
 
For more information related to the Mittag-Leffler function we suggest [2, 9]. The corresponding left- and right-sided generalized fractional integral operators \(\epsilon _{\mu ,\alpha ,l,\omega ,a ^{+}}^{\gamma ,\delta ,k,c} \) and \(\epsilon _{\mu ,\alpha ,l,\omega ,b ^{-}}^{\gamma ,\delta ,k,c}\) are defined as follows.
Definition 3
([1])
Let \(\omega ,\mu ,\alpha ,l,\gamma ,c\in \mathbb{C}\), \(\Re (\mu ),\Re (\alpha ),\Re (l)>0\), \(\Re (c)>\Re (\gamma )>0\) with \(p\geq 0\), \(\delta >0\) and \(0< k\leq \delta +\Re (\mu )\). Let \(f\in L_{1}[a,b]\) and \(x\in [a,b]\). Then the generalized fractional integral operators \(\epsilon _{\mu ,\alpha ,l,\omega ,a^{+}}^{\gamma , \delta ,k,c}f \) and \(\epsilon _{\mu ,\alpha ,l,\omega ,b^{-}}^{\gamma ,\delta ,k,c}f\) are defined by
$$ \bigl( \epsilon _{\mu ,\alpha ,l,\omega ,a^{+}}^{\gamma ,\delta ,k,c}f \bigr) (x;p)= \int _{a}^{x}(x-t)^{\alpha -1}E_{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega (x-t)^{\mu };p\bigr)f(t)\,dt $$
(4)
and
$$ \bigl( \epsilon _{\mu ,\alpha ,l,\omega ,b^{-}}^{\gamma ,\delta ,k,c}f \bigr) (x;p)= \int _{x}^{b}(t-x)^{\alpha -1}E_{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega (t-x)^{\mu };p\bigr)f(t)\,dt. $$
(5)
Remark 3
Equations (4) and (5) are the generalization of the following fractional integral operators:
(i)
setting \(p=0\), it reduces to the fractional integral operators defined by Salim et al. in [17],
 
(ii)
setting \(l=\delta =1\), it reduces to the fractional integral operators defined by Rahman et al. in [15],
 
(iii)
setting \(p=0\) and \(l=\delta =1\), it reduces to the fractional integral operators defined by Srivastava et al. in [21],
 
(iv)
setting \(p=0\) and \(l=\delta =k=1\), it reduces to the fractional integral operators defined by Prabhakar in [14],
 
(v)
setting \(p=\omega =0\), it reduces to the right-sided and left-sided Riemann–Liouville fractional integrals.
 
Let \(f\in L_{1}[a,b]\). Then the left- and right-sided Riemann–Liouville fractional integrals \(I^{\alpha }_{a^{+}}f\) and \(I^{\alpha }_{b^{-}}f\) of order \(\alpha \in \mathbb{R}\) \((\alpha >0)\) are defined by
$$ I^{\alpha }_{a^{+}}f(x):= \frac{1}{\varGamma (\alpha )} \int _{a}^{x}\frac{f(t)\,dt}{(x-t)^{1- \alpha }}, \quad x>a, $$
and
$$ I^{\alpha }_{b^{-}}f(x):= \frac{1}{\varGamma (\alpha )} \int _{x}^{b}\frac{f(t)\,dt}{(t-x)^{1- \alpha }}, \quad x< b, $$
respectively. Here \(\varGamma (\alpha )\) is the Euler Gamma function and \(I^{0}_{a^{+}}f(x) = I^{0}_{b^{-}}f(x)=f(x)\).
Fractional integral inequalities are useful in establishing the uniqueness of solutions of fractional differential equations. A lot of work dedicated to fractional calculus reflects its importance in almost all fields of mathematics, physics, information technology and other sciences [3, 4, 6, 7, 10, 11, 13, 22]. In the upcoming section, first we prove the Hadamard inequality for \((h-m)\)-convex functions via extended generalized fractional integral operators defined in (4) and (5). Then the Fejér–Hadamard inequality for these operators is obtained. Furthermore, the results for fractional integral operators associated with (4), (5) (see Remark 3), and several kinds of convexity (see Remark 1) are highlighted.

2 Main results

First we present the extended generalized fractional integral Hadamard inequality for \((h-m)\)-convex functions.
Theorem 2.1
Let \(f: [a,b]\subset (0,\infty )\to \mathbb{R}\) be a function such that \(f\in L_{1}[a,b]\) with \(a< b\) and \(m\in (0,1]\). If f is \((h-m)\)-convex and \(h\in L_{1}[0,1]\), then the following inequalities for extended generalized fractional integral operators, (4) and (5), hold:
$$\begin{aligned} &f \biggl( \frac{bm+a}{2} \biggr) \bigl(\epsilon _{\mu ,\alpha ,l,\omega ^{o},a ^{+}}^{\gamma ,\delta ,k,c}1 \bigr) (mb;p) \\ &\quad \leq h \biggl( \frac{1}{2} \biggr) \biggl[m^{\alpha +1} \bigl(\epsilon _{ \mu ,\alpha ,l,\omega ^{o}m^{\mu },b^{-}}^{\gamma ,\delta ,k,c}f \bigr) \biggl(\frac{a}{m};p \biggr)+ \bigl(\epsilon _{\mu ,\alpha ,l,\omega ^{o},a ^{+}}^{\gamma ,\delta ,k,c}f \bigr) (mb;p) \biggr] \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) (bm-a)^{\alpha } \biggl\lbrace m \biggl[mf \biggl( \frac{a}{m^{2}} \biggr) +f(b) \biggr] \bigl( \epsilon _{ \mu ,\alpha ,l,\omega ,0^{+}}^{\gamma ,\delta ,k,c}h \bigr) (1;p) \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \bigl(\epsilon _{\mu ,\alpha ,l,\omega ,1^{-}} ^{\gamma ,\delta ,k,c}h \bigr) (0;p) \biggr\rbrace , \end{aligned}$$
(6)
where \(\omega ^{o}=\frac{\omega }{(bm-a)^{\mu }}\).
Proof
Since f is \((h-m)\)-convex, we have
$$ f \biggl( \frac{xm+y}{2} \biggr) \leq h \biggl( \frac{1}{2} \biggr) \bigl(mf(x)+f(y)\bigr). $$
(7)
Putting in the above \(x=(1-t)\frac{a}{m}+tb\) and \(y=m(1-t)b+ta\), we get
$$ f \biggl( \frac{bm+a}{2} \biggr)\leq h \biggl( \frac{1}{2} \biggr) \biggl(mf\biggl((1-t) \frac{a}{m}+tb\biggr)+f \bigl(m(1-t)b+ta\bigr)\biggr). $$
(8)
Multiplying (8) by \(t^{\alpha -1}E_{\mu ,\alpha ,l}^{\gamma , \delta ,k,c}(\omega t^{\mu };p)\) on both sides, then integrating over \([0,1]\), we have
$$\begin{aligned} &f \biggl( \frac{bm+a}{2} \biggr) \int _{0}^{1}t^{\alpha -1}E_{\mu , \alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega t^{\mu };p\bigr)\,dt \\ &\quad \leq h \biggl( \frac{1}{2} \biggr) \biggl[ \int _{0}^{1}t^{\alpha -1}E _{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega t^{\mu };p\bigr) mf \biggl( (1-t) \frac{a}{m}+tb \biggr)\,dt \\ &\qquad{} + \int _{0}^{1}t^{\alpha -1}E_{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega t^{\mu };p\bigr)f\bigl(m(1-t)b+ta\bigr)\,dt \biggr]. \end{aligned}$$
Putting in the above \(x=(1-t)\frac{a}{m}+tb\) and \(y=m(1-t)b+ta\), then, by using (4) and (5), we get
$$\begin{aligned} &f \biggl( \frac{bm+a}{2} \biggr) \bigl(\epsilon _{\mu ,\alpha ,l,\omega ^{o},a ^{+}}^{\gamma ,\delta ,k,c}1 \bigr) (mb;p) \\ &\quad \leq h \biggl( \frac{1}{2} \biggr) \biggl[m^{\alpha +1} \bigl(\epsilon _{ \mu ,\alpha ,l,\omega ^{o}m^{\mu },b^{-}}^{\gamma ,\delta ,k,c}f \bigr) \biggl(\frac{a}{m};p \biggr)+ \bigl(\epsilon _{\mu ,\alpha ,l,\omega ^{o},a^{+}} ^{\gamma ,\delta ,k,c}f \bigr) (mb;p) \biggr]. \end{aligned}$$
(9)
Again by using \((h-m)\)-convexity of f, we have
$$\begin{aligned} &mf \biggl( (1-t)\frac{a}{m}+tb \biggr) +f\bigl(m(1-t)b+ta \bigr) \\ &\quad \leq m^{2}h(1-t)f \biggl( \frac{a}{m^{2}} \biggr) +mh(t)f(b)+mh(1-t)f(b)+h(t)f(a) \\ &\quad =m \biggl[ mf \biggl( \frac{a}{m^{2}} \biggr) +f(b) \biggr]h(1-t)+ \bigl[ mf(b)+f(a) \bigr]h(t). \end{aligned}$$
(10)
Multiplying (10) by \(h ( \frac{1}{2} ) t^{\alpha -1}E _{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c}(\omega t^{\mu };p)\) on both sides, then integrating over \([0,1]\), we have
$$\begin{aligned} &h \biggl( \frac{1}{2} \biggr) \biggl[ \int _{0}^{1}t^{\alpha -1}E_{ \mu ,\alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega t^{\mu };p\bigr)mf \biggl( (1-t) \frac{a}{m}+tb \biggr)\,dt \\ &\qquad {} + \int _{0}^{1}t^{\alpha -1}E_{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega t^{\mu };p\bigr)f\bigl(m(1-t)b+ta\bigr)\,dt \biggr] \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) \biggl\lbrace m \biggl[ mf \biggl( \frac{a}{m ^{2}} \biggr) +f(b) \biggr] \int _{0}^{1}t^{\alpha -1}E_{\mu ,\alpha ,l} ^{\gamma ,\delta ,k,c}\bigl(\omega t^{\mu };p\bigr)h(1-t)\,dt \\ &\qquad {} + \bigl[ mf(b)+f(a) \bigr] \int _{0}^{1}t^{\alpha -1}E_{ \mu ,\alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega t^{\mu };p\bigr)h(t)\,dt \biggr\rbrace . \end{aligned}$$
By using (4) and (5), we get
$$\begin{aligned} &h \biggl( \frac{1}{2} \biggr) \biggl[m^{\alpha +1} \bigl(\epsilon _{\mu , \alpha ,l,\omega ^{o}m^{\mu },b^{-}}^{\gamma ,\delta ,k,c}f \bigr) \biggl(\frac{a}{m};p \biggr)+ \bigl( \epsilon _{\mu ,\alpha ,l,\omega ^{o},a ^{+}}^{\gamma ,\delta ,k,c}f \bigr) (mb;p) \biggr] \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) (bm-a)^{\alpha } \biggl\lbrace m \biggl[mf \biggl( \frac{a}{m^{2}} \biggr) +f(b) \biggr] \bigl( \epsilon _{ \mu ,\alpha ,l,\omega ,0^{+}}^{\gamma ,\delta ,k,c}h \bigr) (1;p) \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \bigl(\epsilon _{\mu ,\alpha ,l,\omega ,1^{-}} ^{\gamma ,\delta ,k,c}h \bigr) (0;p) \biggr\rbrace . \end{aligned}$$
From the above inequality and (9), we get the required inequality (6). □
Several known results are special cases of the above generalized fractional Hadamard inequality comprised in the following remark.
Remark 4
(i)
If we put \(p=0\) in (6), then [16, Theorem 2.1] is obtained.
 
(ii)
If we put \(h(t)=t\), \(m=1\) and \(p=0\) in (6), then [5, Theorem 2.1] is obtained.
 
(iii)
If we put \(h(t)=t\) and \(p=0\) in (6), then [6, Theorem 3] is obtained.
 
(iv)
If we put \(h(t)=t\) and \(p=\omega =0\) in (6), then [7, Theorem 2.1] is obtained.
 
(v)
If we put \(h(t)=t\), \(m=1\) and \(p=\omega =0\) in (6), then [18, Theorem 2] is obtained.
 
(vi)
If we put \(h(t)=t\), \(m=1\), \(\alpha =1\) and \(p=\omega =0\) in (6), then the Hadamard inequality is obtained.
 
In the following we prove an analog version of the Hadamard inequality for generalized fractional integrals.
Theorem 2.2
Let \(f: [a,b]\subset (0,\infty )\to \mathbb{R}\) be a function such that \(f\in L_{1}[a,b]\) with \(a< b\) and \(m\in (0,1]\). If f is \((h-m)\)-convex, then the following inequalities for extended generalized fractional integral operators, (4) and (5), hold:
$$\begin{aligned} &f \biggl( \frac{a+bm}{2} \biggr) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}2^{\mu }, ( \frac{a+bm}{2} ) ^{+}}1 \bigr) (mb;p) \\ &\quad \leq h \biggl( \frac{1}{2} \biggr) \biggl[ \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}2^{\mu }, ( \frac{a+bm}{2} ) ^{+}}f \bigr) (mb;p)+m^{\alpha +1} \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}(2m)^{\mu }, ( \frac{a+bm}{2m} ) ^{-}}f \bigr) \biggl(\frac{a}{m};p \biggr) \biggr] \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) \frac{(bm-a)^{\alpha }}{2^{\alpha }} \biggl\lbrace m \biggl[ mf \biggl( \frac{a}{m ^{2}} \biggr) +f(b) \biggr] \int _{0}^{1}t^{\alpha -1}E^{\gamma , \delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h \biggl( \frac{2-t}{2} \biggr) \,dt \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \int _{0}^{1}t^{\alpha -1}E^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h \biggl( \frac{t}{2} \biggr) \,dt \biggr\rbrace , \end{aligned}$$
(11)
where \(\omega ^{o}=\frac{\omega }{(bm-a)^{\mu }}\).
Proof
Putting \(x=\frac{t}{2}b+\frac{(2-t)}{2}\frac{a}{m}\) and \(y= \frac{t}{2}a+m\frac{(2-t)}{2}b\) in (7), we get
$$\begin{aligned} f \biggl( \frac{a+bm}{2} \biggr) \leq h \biggl( \frac{1}{2} \biggr) \biggl[ mf \biggl( \frac{t}{2}b+ \frac{(2-t)}{2}\frac{a}{m} \biggr)+f \biggl( \frac{t}{2}a+m \frac{(2-t)}{2}b \biggr) \biggr]. \end{aligned}$$
(12)
Multiplying (12) by \(t^{\alpha -1}E^{\gamma ,\delta ,k,c}_{ \mu ,\alpha ,l}(\omega t^{\mu };p)\) on both sides, then integrating over \([0,1]\), we have
$$\begin{aligned} &f \biggl( \frac{a+bm}{2} \biggr) \int _{0}^{1}t^{\alpha -1}E^{\gamma , \delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)\,dt \\ &\quad \leq h \biggl( \frac{1}{2} \biggr) \biggl[ \int _{0}^{1}t^{\alpha -1}E ^{\gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr) mf \biggl( \frac{t}{2}a+m \frac{(2-t)}{2}b \biggr)\,dt \\ &\qquad {} + \int _{0}^{1}t^{\alpha -1}E^{\gamma ,\delta ,k,c}_{\mu , \alpha ,l} \bigl(\omega t^{\mu };p\bigr)f \biggl( \frac{t}{2}b+ \frac{(2-t)}{2} \frac{a}{m} \biggr) \,dt \biggr]. \end{aligned}$$
Putting \(x=\frac{t}{2}b+\frac{(2-t)}{2}\frac{a}{m}\) and \(y= \frac{t}{2}a+m\frac{(2-t)}{2}b\), then, by using (4) and (5), we get
$$\begin{aligned} &f \biggl( \frac{a+bm}{2} \biggr) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}2^{\mu }, ( \frac{a+bm}{2} ) ^{+}}1 \bigr) (mb;p) \\ &\quad \leq h \biggl( \frac{1}{2} \biggr) \biggl[ \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}2^{\mu }, ( \frac{a+bm}{2} ) ^{+}}f \bigr) (mb;p)+m^{\alpha +1} \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}(2m)^{\mu }, ( \frac{a+bm}{2m} ) ^{-}}f \bigr) \biggl(\frac{a}{m};p \biggr) \biggr]. \end{aligned}$$
(13)
Again by using \((h-m)\)-convexity of f, we have
$$\begin{aligned} \begin{aligned}[b] &f \biggl( \frac{t}{2}a+m\frac{(2-t)}{2}b \biggr) +mf \biggl( \frac{t}{2}b+\frac{(2-t)}{2}\frac{a}{m} \biggr) \\ &\quad \leq h \biggl( \frac{t}{2} \biggr)f(a)+mh \biggl( \frac{2-t}{2} \biggr)f(b)+mh \biggl( \frac{t}{2} \biggr) f(b)+ m^{2}h \biggl( \frac{2-t}{2} \biggr) f \biggl( \frac{a}{m^{2}} \biggr) \\ &\quad =m \biggl[ mf \biggl( \frac{a}{m^{2}} \biggr) +f(b) \biggr]h \biggl( \frac{2-t}{2} \biggr)+ \bigl[ mf(b)+f(a) \bigr]h \biggl( \frac{t}{2} \biggr). \end{aligned} \end{aligned}$$
(14)
Multiplying (14) by \(h ( \frac{1}{2} )t^{\alpha -1}E ^{\gamma ,\delta ,k,c}_{\mu ,\alpha ,l}(\omega t^{\mu };p)\) on both sides, then integrating over \([0,1]\), we have
$$\begin{aligned} &h \biggl( \frac{1}{2} \biggr) \biggl[ \int _{0}^{1}t^{\alpha -1}E^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)f \biggl( \frac{t}{2}a+m \frac{(2-t)}{2}b \biggr)\,dt \\ &\qquad {}+ \int _{0}^{1}t^{\alpha -1}E^{\gamma ,\delta ,k,c}_{\mu , \alpha ,l} \bigl(\omega t^{\mu };p\bigr)mf \biggl( \frac{t}{2}b+ \frac{(2-t)}{2} \frac{a}{m} \biggr)\,dt \biggr] \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) \biggl\lbrace m \biggl[ mf \biggl( \frac{a}{m ^{2}} \biggr) +f(b) \biggr] \int _{0}^{1}t^{\alpha -1}E^{\gamma , \delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h \biggl( \frac{2-t}{2} \biggr) \,dt \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \int _{0}^{1}t^{\alpha -1}E^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h \biggl( \frac{t}{2} \biggr) \,dt \biggr\rbrace . \end{aligned}$$
By using (4) and (5), we get
$$\begin{aligned} &h \biggl( \frac{1}{2} \biggr) \biggl[ \bigl(\epsilon ^{\gamma ,\delta ,k,c}_{\mu ,\alpha ,l,\omega ^{o}2^{\mu }, ( \frac{a+bm}{2} ) ^{+}}f \bigr) (mb;p)+m^{\alpha +1} \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}(2m)^{\mu }, ( \frac{a+bm}{2m} ) ^{-}}f \bigr) \biggl(\frac{a}{m};p \biggr) \biggr] \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) \frac{(bm-a)^{\alpha }}{2^{\alpha }} \biggl\lbrace m \biggl[ mf \biggl( \frac{a}{m ^{2}} \biggr) +f(b) \biggr] \int _{0}^{1}t^{\alpha -1}E^{\gamma , \delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h \biggl( \frac{2-t}{2} \biggr) \,dt \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \int _{0}^{1}t^{\alpha -1}E^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h \biggl( \frac{t}{2} \biggr) \,dt \biggr\rbrace . \end{aligned}$$
From the above inequality and (13), we get the required inequality (11). □
Remark 5
If we put \(p=0\) in (11), then [16, Theorem 2.2] is obtained.
Corollary 2.3
If we put \(h(t)=t\), \(m=1\) and \(p=0\) in (11), then the following inequality analog to the Hadamard inequality [5, Theorem 2.1] for convex functions via generalized fractional integrals is obtained:
$$\begin{aligned} f \biggl( \frac{b+a}{2} \biggr) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o},a^{+}}1 \bigr) (b)&\leq \frac{1}{2} \bigl[ \bigl(\epsilon ^{\gamma ,\delta ,k,c}_{\mu ,\alpha ,l,\omega ^{o}, ( \frac{a+b}{2} ) ^{-}} f \bigr) (a )+ \bigl(\epsilon ^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l,\omega ^{o}, ( \frac{a+b}{2} ) ^{+}}f \bigr) (b) \bigr] \\ & \leq \frac{1}{2} \bigl[ f(a)+f(b) \bigr] \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o},b^{-}}1 \bigr) (a). \end{aligned}$$
If we put \(h(t)=t\), \(m=1\) and \(p=\omega =0\) in (11), then we get the following result for Riemann–Liouville fractional integral.
Corollary 2.4
([19])
Let \(f :[a,b]\to \mathbb{R}\) be a function with \(0 \leq a < b\) and \(f \in L_{1} [a,b]\). If f is convex on \([a,b]\), then the following inequalities for fractional integrals hold:
$$\begin{aligned} &f \biggl( \frac{b+a}{2} \biggr) \leq \frac{2^{\alpha +1}\varGamma ( \alpha +1)}{(b-a)^{\alpha }} \bigl[I^{\alpha }_{ ( \frac{a+b}{2} ) ^{+}}f(b)+I^{\alpha }_{ ( \frac{a+b}{2} ) ^{-}}f(a) \bigr]\leq \frac{1}{2} \bigl[ f(a)+f(b) \bigr]. \end{aligned}$$
In the following we present a Fejér–Hadamard inequality for \((h-m)\)-convex functions via generalized fractional integral operators.
Theorem 2.5
Let \(f :[a,b]\subset [0,\infty )\to \mathbb{R}\) be a function such that \(f\in L_{1}[a,b]\) with \(a < b\) and \(m\in (0,1]\). Also, let \(g : [a,b]\to \mathbb{R}\) be a function which is non-negative and integrable. If f is \((h-m)\)-convex, \(f(x)=f(a+mb-mx)\) and \(h\in L_{1}[0,1]\), then the following inequalities for extended generalized fractional integral operators, (4) and (5), hold:
$$\begin{aligned} &f \biggl( \frac{bm+a}{2} \biggr) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}m^{\mu },b^{-}}g \bigr) \biggl( \frac{a}{m};p \biggr) \\ & \quad \leq h \biggl( \frac{1}{2} \biggr) (m+1) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}m^{\mu },b^{-}}fg \bigr) \biggl( \frac{a}{m};p \biggr) \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) \frac{(bm-a)^{\alpha }}{m^{\alpha }} \biggl\lbrace m \biggl[mf \biggl( \frac{a}{m ^{2}} \biggr) +f(b) \biggr] \bigl( \epsilon _{\mu ,\alpha ,l,\omega ,0^{+}} ^{\gamma ,\delta ,k,c}h \bigr) (1;p) \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \bigl(\epsilon _{\mu ,\alpha ,l,\omega ,1^{-}} ^{\gamma ,\delta ,k,c}h \bigr) (0;p) \biggr\rbrace , \end{aligned}$$
(15)
where \(\omega ^{o}=\frac{\omega }{(bm-a)^{\mu }}\).
Proof
Multiplying (8) by \(t^{\alpha -1}E^{\gamma ,\delta ,k,c}_{ \mu ,\alpha ,l}(\omega t^{\mu };p)g ( tb+(1-t)\frac{a}{m} ) \) on both sides, then integrating over \([0,1]\), we have
$$\begin{aligned} &f \biggl( \frac{bm+a}{2} \biggr) \int _{0}^{1}t^{\alpha -1}E^{\gamma , \delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)g \biggl( tb+(1-t) \frac{a}{m} \biggr) \,dt \\ & \quad \leq h \biggl( \frac{1}{2} \biggr) \biggl[ \int _{0}^{1}t^{\alpha -1}E ^{\gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)g \biggl( tb+(1-t) \frac{a}{m} \biggr) mf \biggl( (1-t)\frac{a}{m}+tb \biggr)\,dt \\ &\qquad {}+ \int _{0}^{1}t^{\alpha -1}E^{\gamma ,\delta ,k,c}_{\mu , \alpha ,l} \bigl(\omega t^{\mu };p\bigr)g \biggl( tb+(1-t)\frac{a}{m} \biggr) f\bigl(m(1-t)b+ta\bigr)\,dt \biggr]. \end{aligned}$$
Putting \(x=(1-t)\frac{a}{m}+tb\) in the above and then, by using the condition \(f(x)=f(a+mb-mx)\), we get
$$\begin{aligned} &f \biggl( \frac{bm+a}{2} \biggr) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}m^{\mu },b^{-}}g \bigr) \biggl( \frac{a}{m};p \biggr) \leq h \biggl( \frac{1}{2} \biggr) (m+1) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}m^{\mu },b^{-}}fg \bigr) \biggl( \frac{a}{m};p \biggr). \end{aligned}$$
(16)
Now multiplying (10) by \(h ( \frac{1}{2} ) t^{\alpha -1}E^{\gamma ,\delta ,k,c}_{\mu ,\alpha ,l}(\omega t^{\mu };p)g ( tb+(1-t)\frac{a}{m} )\) on both sides, then integrating over \([0,1]\), we have
$$\begin{aligned} &h \biggl( \frac{1}{2} \biggr) \biggl[ \int _{0}^{1}t^{\alpha -1}E^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)g \biggl( tb+(1-t) \frac{a}{m} \biggr)mf \biggl( (1-t)\frac{a}{m}+tb \biggr)\,dt \\ &\qquad {}+ \int _{0}^{1}t^{\alpha -1}E^{\gamma ,\delta ,k,c}_{\mu , \alpha ,l} \bigl(\omega t^{\mu };p\bigr)g \biggl( tb+(1-t)\frac{a}{m} \biggr)f \bigl(m(1-t)b+ta\bigr)\,dt \biggr] \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) \biggl\lbrace \biggl[ m^{2}f \biggl( \frac{a}{m^{2}} \biggr) +mf(b) \biggr] \int _{0}^{1}t^{\alpha -1}E^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h(1-t)\,dt \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \int _{0}^{1}t^{\alpha -1}E^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h(t)\,dt \biggr\rbrace . \end{aligned}$$
By using (4) and (5), we get
$$\begin{aligned} &h \biggl( \frac{1}{2} \biggr) (m+1) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}m^{\mu },b^{-}}fg \bigr) \biggl( \frac{a}{m};p \biggr) \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) \frac{(bm-a)^{\alpha }}{m^{\alpha }} \biggl\lbrace m \biggl[mf \biggl( \frac{a}{m ^{2}} \biggr) +f(b) \biggr] \bigl( \epsilon _{\mu ,\alpha ,l,\omega ,0^{+}} ^{\gamma ,\delta ,k,c}h \bigr) (1;p) \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \bigl(\epsilon _{\mu ,\alpha ,l,\omega ,1^{-}} ^{\gamma ,\delta ,k,c}h \bigr) (0;p) \biggr\rbrace . \end{aligned}$$
From the above inequality and (16), we get the required inequality (15). □
Remark 6
(i)
If we put \(p=0\) in (15), then [16, Theorem 2.5] is obtained.
 
(ii)
If we put \(h(t)=t\), \(m=1\) and \(p=0\) in (15), then [5, Theorem 2.2] is obtained.
 

3 Concluding remarks

The aim of this paper is to extend the generalized fractional integral inequalities via \((h-m)\)-convexity. It is worthy of note that the presented results in particular contain a number of fractional integral inequalities for h-convex, m-convex, s-convex, convex and related functions (see Remark 1 and Remark 3). The Fejér–Hadamard inequality summarizes all the discussed results in a very nice compact form. We hope this work will attract researchers working in mathematical analysis, fractional calculus and other related fields.

Acknowledgements

The authors are thankful to both reviewers for positive comments, which improved the quality of this paper.

Availability of data and materials

All data is included within this paper.

Competing interests

The authors do not have any competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Andrić, M., Farid, G., Pečarić, J.: A further extension of Mittag-Leffler function. Fract. Calc. Appl. Anal. 21(5), 1377–1395 (2018) MathSciNetCrossRef Andrić, M., Farid, G., Pečarić, J.: A further extension of Mittag-Leffler function. Fract. Calc. Appl. Anal. 21(5), 1377–1395 (2018) MathSciNetCrossRef
2.
go back to reference Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018) MathSciNetCrossRef Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018) MathSciNetCrossRef
3.
go back to reference Chen, F.: On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity. Chin. J. Math. 2014, 7 (2014) MathSciNetMATH Chen, F.: On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity. Chin. J. Math. 2014, 7 (2014) MathSciNetMATH
4.
go back to reference Chen, H., Katugampola, U.N.: Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 446, 1274–1291 (2017) MathSciNetCrossRef Chen, H., Katugampola, U.N.: Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 446, 1274–1291 (2017) MathSciNetCrossRef
5.
go back to reference Farid, G.: Hadamard and Fejér–Hadamard inequalities for generalized fractional integral involving special functions. Konuralp J. Math. 4(1), 108–113 (2016) MathSciNetMATH Farid, G.: Hadamard and Fejér–Hadamard inequalities for generalized fractional integral involving special functions. Konuralp J. Math. 4(1), 108–113 (2016) MathSciNetMATH
6.
go back to reference Farid, G.: A treatment of the Hadamard inequality due to m-convexity via generalized fractional integral. J. Fract. Calc. Appl. 9(1), 8–14 (2018) MathSciNet Farid, G.: A treatment of the Hadamard inequality due to m-convexity via generalized fractional integral. J. Fract. Calc. Appl. 9(1), 8–14 (2018) MathSciNet
7.
go back to reference Farid, G., Rehman, A.U., Tariq, B.: On Hadamard-type inequalities for m-convex functions via Riemann–Liouville fractional integrals. Stud. Univ. Babeş–Bolyai, Math. 62(2), 141–150 (2017) MathSciNetCrossRef Farid, G., Rehman, A.U., Tariq, B.: On Hadamard-type inequalities for m-convex functions via Riemann–Liouville fractional integrals. Stud. Univ. Babeş–Bolyai, Math. 62(2), 141–150 (2017) MathSciNetCrossRef
8.
go back to reference Fejér, L.: Über die Fourierreihen II. Math. Naturwiss. Anz. Ungar. Akad. Wiss. 24, 369–390 (1906) MATH Fejér, L.: Über die Fourierreihen II. Math. Naturwiss. Anz. Ungar. Akad. Wiss. 24, 369–390 (1906) MATH
9.
go back to reference Fernandez, A., Baleanu, D., Srivastava, H.M.: Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions. Commun. Nonlinear Sci. Numer. Simul. 67, 517–527 (2019) MathSciNetCrossRef Fernandez, A., Baleanu, D., Srivastava, H.M.: Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions. Commun. Nonlinear Sci. Numer. Simul. 67, 517–527 (2019) MathSciNetCrossRef
10.
go back to reference Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) MATH
11.
go back to reference Loverro, A.: Fractional Calculus: History, Definitions and Applications for the Engineers. University of Notre Dame, Notre Dame (2004) Loverro, A.: Fractional Calculus: History, Definitions and Applications for the Engineers. University of Notre Dame, Notre Dame (2004)
12.
go back to reference Özdemir, M.E., Akdemri, A.O., Set, E.: On \((h-m)\)-convexity and Hadamard-type inequalities. Transylv. J. Math. Mech. 8(1), 51–58 (2016) MathSciNet Özdemir, M.E., Akdemri, A.O., Set, E.: On \((h-m)\)-convexity and Hadamard-type inequalities. Transylv. J. Math. Mech. 8(1), 51–58 (2016) MathSciNet
13.
go back to reference Podlubni, I.: Fractional Differential Equations. Academic Press, San Diego (1999) Podlubni, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
14.
go back to reference Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971) MathSciNetMATH Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971) MathSciNetMATH
15.
go back to reference Rahman, G., Baleanu, D., Qurashi, M.A., Purohit, S.D., Mubeen, S., Arshad, M.: The extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 10, 4244–4253 (2017) MathSciNetCrossRef Rahman, G., Baleanu, D., Qurashi, M.A., Purohit, S.D., Mubeen, S., Arshad, M.: The extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 10, 4244–4253 (2017) MathSciNetCrossRef
16.
go back to reference Rehman, A.U., Farid, G., Ain, Q.U.: Hadamard and Fejér–Hadamard inequalities for \((h-m)\)-convex function via fractional integral containing the generalized Mittag-Leffler function. J. Sci. Res. Reports 18(5), 1–8 (2018) Rehman, A.U., Farid, G., Ain, Q.U.: Hadamard and Fejér–Hadamard inequalities for \((h-m)\)-convex function via fractional integral containing the generalized Mittag-Leffler function. J. Sci. Res. Reports 18(5), 1–8 (2018)
17.
go back to reference Salim, T.O., Faraj, A.W.: A generalization of Mittag-Leffler function and integral operator associated with integral calculus. J. Fract. Calc. Appl. 3(5), 1–13 (2012) Salim, T.O., Faraj, A.W.: A generalization of Mittag-Leffler function and integral operator associated with integral calculus. J. Fract. Calc. Appl. 3(5), 1–13 (2012)
18.
go back to reference Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N.: Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. J. Math. Comput. Model 57(9), 2403–2407 (2013) CrossRef Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N.: Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. J. Math. Comput. Model 57(9), 2403–2407 (2013) CrossRef
19.
go back to reference Sarikaya, M.Z., Yildirim, H.: On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 17(2), 1049–1059 (2016) MathSciNetCrossRef Sarikaya, M.Z., Yildirim, H.: On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 17(2), 1049–1059 (2016) MathSciNetCrossRef
20.
go back to reference Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336, 797–811 (2007) MathSciNetCrossRef Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336, 797–811 (2007) MathSciNetCrossRef
21.
go back to reference Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernal. Appl. Math. Comput. 211(1), 198–210 (2009) MathSciNetMATH Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernal. Appl. Math. Comput. 211(1), 198–210 (2009) MathSciNetMATH
22.
go back to reference Tunc, M.: On new inequalities for h-convex functions via Riemann–Liouville fractional integration. Filomat 27(4), 559–565 (2013) MathSciNetCrossRef Tunc, M.: On new inequalities for h-convex functions via Riemann–Liouville fractional integration. Filomat 27(4), 559–565 (2013) MathSciNetCrossRef
Metadata
Title
-convex functions and associated fractional Hadamard and Fejér–Hadamard inequalities via an extended generalized Mittag-Leffler function
Authors
Shin Min Kang
Ghulam Farid
Waqas Nazeer
Sajid Mehmood
Publication date
01-12-2019
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2019
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-019-2019-5

Other articles of this Issue 1/2019

Journal of Inequalities and Applications 1/2019 Go to the issue

Premium Partner