Skip to main content
Top
Published in: Journal of Computational Neuroscience 1/2019

05-06-2018

Convolutional neural network models of V1 responses to complex patterns

Authors: Yimeng Zhang, Tai Sing Lee, Ming Li, Fang Liu, Shiming Tang

Published in: Journal of Computational Neuroscience | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, we evaluated the convolutional neural network (CNN) method for modeling V1 neurons of awake macaque monkeys in response to a large set of complex pattern stimuli. CNN models outperformed all the other baseline models, such as Gabor-based standard models for V1 cells and various variants of generalized linear models. We then systematically dissected different components of the CNN and found two key factors that made CNNs outperform other models: thresholding nonlinearity and convolution. In addition, we fitted our data using a pre-trained deep CNN via transfer learning. The deep CNN’s higher layers, which encode more complex patterns, outperformed lower ones, and this result was consistent with our earlier work on the complexity of V1 neural code. Our study systematically evaluates the relative merits of different CNN components in the context of V1 neuron modeling.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The images were rescaled to 2/3 of their original sizes; we used this scale because in another study (Zhang et al. 2016) we found that this scale gave the highest representational similarity (Kriegeskorte et al. 2008) between the CNN and neural data among all scales explored; we also tried using raw images without rescaling in the current study and got worse results.
 
2
In theory we should exclude these neurons for model evaluation, we did not do it as doing it or not has negligible effects with hundreds of neurons in our data set.
 
3
In practice, we performed PCA only on the pure quadratic terms to reduce their dimensionalities to 432 and concatenated the PCAed 432-dimensional pure quadratic terms with the 400-dimensional linear terms to generate the final 882-dimensional input vectors; such method would guarantee that the information from linear terms, which are heavily used in most V1 models, is preserved. We also tried performing PCA on both linear and pure quadratic terms together and two methods made little difference in our experiments.
 
Literature
go back to reference Bishop, C.M. (2006). Machine learning and pattern recognition. Information science and statistics. Springer. Bishop, C.M. (2006). Machine learning and pattern recognition. Information science and statistics. Springer.
go back to reference Cadena, S.A., Denfield, G.H., Walker, E.Y., Gatys, L.A., Tolias, A.S., Bethge, M., Ecker, A.S. (2017). Deep convolutional models improve predictions of macaque v1 responses to natural images. bioRxiv. Cadena, S.A., Denfield, G.H., Walker, E.Y., Gatys, L.A., Tolias, A.S., Bethge, M., Ecker, A.S. (2017). Deep convolutional models improve predictions of macaque v1 responses to natural images. bioRxiv.
go back to reference Daugman, J.G. (1985). Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America. A, 2(7), 1160–1169.CrossRef Daugman, J.G. (1985). Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America. A, 2(7), 1160–1169.CrossRef
go back to reference Dayan, P., & Abbott, L.F. (2001). Theoretical neuroscience. Computational and Mathematical Modeling of Neural Systems. Dayan, P., & Abbott, L.F. (2001). Theoretical neuroscience. Computational and Mathematical Modeling of Neural Systems.
go back to reference Goodfellow, I.J., Bengio, Y., Courville, A. (2016). Deep learning. MIT Press. Goodfellow, I.J., Bengio, Y., Courville, A. (2016). Deep learning. MIT Press.
go back to reference Hegdé, J., & Van Essen, D.C. (2007). A comparative study of shape representation in macaque visual areas V2 and V4. Cerebral Cortex, 17(5), 1100–1116.CrossRefPubMed Hegdé, J., & Van Essen, D.C. (2007). A comparative study of shape representation in macaque visual areas V2 and V4. Cerebral Cortex, 17(5), 1100–1116.CrossRefPubMed
go back to reference Hsu, A., Borst, A., Theunissen, F. (2004). Quantifying variability in neural responses and its application for the validation of model predictions. Network: Computation in Neural Systems, 15(2), 91–109.CrossRef Hsu, A., Borst, A., Theunissen, F. (2004). Quantifying variability in neural responses and its application for the validation of model predictions. Network: Computation in Neural Systems, 15(2), 91–109.CrossRef
go back to reference Jones, J.P., & Palmer, L.A. (1987a). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6), 1233– 1258.CrossRefPubMed Jones, J.P., & Palmer, L.A. (1987a). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6), 1233– 1258.CrossRefPubMed
go back to reference Kindel, W.F., Christensen, E.D., Zylberberg, J. (2017). Using deep learning to reveal the neural code for images in primary visual cortex. ArXiv e-prints, q-bio.NC. Kindel, W.F., Christensen, E.D., Zylberberg, J. (2017). Using deep learning to reveal the neural code for images in primary visual cortex. ArXiv e-prints, q-bio.NC.
go back to reference Kingma, D.P., & Ba, J. (2014). Adam: a method for stochastic optimization. CoRR, arXiv:1412.6980. Kingma, D.P., & Ba, J. (2014). Adam: a method for stochastic optimization. CoRR, arXiv:1412.​6980.
go back to reference Klindt, D., Ecker, A.S., Euler, T., Bethge, M. (2017). Neural system identification for large populations separating “what” and “where”. In Guyon, I.I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (Eds.) Advances in neural information processing systems 30: annual conference on neural information processing systems 2017, 4-9 December 2017 (pp. 3509–3519). Long Beach. Klindt, D., Ecker, A.S., Euler, T., Bethge, M. (2017). Neural system identification for large populations separating “what” and “where”. In Guyon, I.I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (Eds.) Advances in neural information processing systems 30: annual conference on neural information processing systems 2017, 4-9 December 2017 (pp. 3509–3519). Long Beach.
go back to reference Köster, U., & Olshausen, B. (2013). Testing our conceptual understanding of V1 function. q-bio.NC. arXiv:1311.0778. Köster, U., & Olshausen, B. (2013). Testing our conceptual understanding of V1 function. q-bio.NC. arXiv:1311.​0778.
go back to reference Kriegeskorte, N. (2015). Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual Review of Vision Science, 1(1), 417–446.CrossRefPubMed Kriegeskorte, N. (2015). Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual Review of Vision Science, 1(1), 417–446.CrossRefPubMed
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. In Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (Eds.) Advances in neural information processing systems 25: 26th annual conference on neural information processing systems 2012. Proceedings of a meeting held December 3-6, 2012 (pp. 1106–1114). Lake Tahoe. Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. In Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (Eds.) Advances in neural information processing systems 25: 26th annual conference on neural information processing systems 2012. Proceedings of a meeting held December 3-6, 2012 (pp. 1106–1114). Lake Tahoe.
go back to reference Li, M., Liu, F., Jiang, H., Lee, T.S., Tang, S. (2017). Long-term two-photon imaging in awake macaque monkey. Neuron, 93(5), 1049–1057.e3.CrossRefPubMed Li, M., Liu, F., Jiang, H., Lee, T.S., Tang, S. (2017). Long-term two-photon imaging in awake macaque monkey. Neuron, 93(5), 1049–1057.e3.CrossRefPubMed
go back to reference McCullagh, P., & Nelder, J. (1989). Generalized linear models, 2nd edn. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis. McCullagh, P., & Nelder, J. (1989). Generalized linear models, 2nd edn. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis.
go back to reference McFarland, J.M., Cui, Y., Butts, D.A. (2013). Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLoS Computational Biology, 9(7), e1003143.CrossRefPubMedPubMedCentral McFarland, J.M., Cui, Y., Butts, D.A. (2013). Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLoS Computational Biology, 9(7), e1003143.CrossRefPubMedPubMedCentral
go back to reference McIntosh, L.T., Maheswaranathan, N., Nayebi, A., Ganguli, S., Baccus, S.A. (2017). Deep learning models of the retinal response to natural scenes. ArXiv e-prints, q-bio.NC. McIntosh, L.T., Maheswaranathan, N., Nayebi, A., Ganguli, S., Baccus, S.A. (2017). Deep learning models of the retinal response to natural scenes. ArXiv e-prints, q-bio.NC.
go back to reference Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15(4), 243–262.CrossRef Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15(4), 243–262.CrossRef
go back to reference Park, I.M., & Pillow, J.W. (2011). Bayesian spike-triggered covariance analysis. In Taylor, J.S., Zemel, R.S., Bartlett, P.L., Pereira, F.C.N., Weinberger, K.Q. (Eds.) Advances in neural information processing systems 24: 25th annual conference on neural information processing systems 2011. Proceedings of a meeting held 12-14 December 2011 (pp. 1692–1700). Granada. Park, I.M., & Pillow, J.W. (2011). Bayesian spike-triggered covariance analysis. In Taylor, J.S., Zemel, R.S., Bartlett, P.L., Pereira, F.C.N., Weinberger, K.Q. (Eds.) Advances in neural information processing systems 24: 25th annual conference on neural information processing systems 2011. Proceedings of a meeting held 12-14 December 2011 (pp. 1692–1700). Granada.
go back to reference Park, I.M., Archer, E., Priebe, N., Pillow, J.W. (2013). Spectral methods for neural characterization using generalized quadratic models. In Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (Eds.) Advances in neural information processing systems 26: 27th annual conference on neural information processing systems 2013. Proceedings of a meeting held December 5-8, 2013 (pp. 2454–2462). Lake Tahoe. Park, I.M., Archer, E., Priebe, N., Pillow, J.W. (2013). Spectral methods for neural characterization using generalized quadratic models. In Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (Eds.) Advances in neural information processing systems 26: 27th annual conference on neural information processing systems 2013. Proceedings of a meeting held December 5-8, 2013 (pp. 2454–2462). Lake Tahoe.
go back to reference Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A. (2017). Automatic differentiation. In pytorch. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A. (2017). Automatic differentiation. In pytorch.
go back to reference Prenger, R., Wu, M.C.K., David, S.V., Gallant, J.L. (2004). Nonlinear V1 responses to natural scenes revealed by neural network analysis. Neural Networks, 17(5–6), 663–679.CrossRefPubMed Prenger, R., Wu, M.C.K., David, S.V., Gallant, J.L. (2004). Nonlinear V1 responses to natural scenes revealed by neural network analysis. Neural Networks, 17(5–6), 663–679.CrossRefPubMed
go back to reference Schoppe, O., Harper, N.S., Willmore, B.D.B., King, A.J., Schnupp, J.W.H. (2016). Measuring the performance of neural models. Frontiers in Computational Neuroscience, 10, 1929.CrossRef Schoppe, O., Harper, N.S., Willmore, B.D.B., King, A.J., Schnupp, J.W.H. (2016). Measuring the performance of neural models. Frontiers in Computational Neuroscience, 10, 1929.CrossRef
go back to reference Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. ArXiv e-prints, cs.CV. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. ArXiv e-prints, cs.CV.
go back to reference Tang, S., Lee, T.S., Li, M., Zhang, Y., Xu, Y., Liu, F., Teo, B., Jiang, H. (2018). Complex pattern selectivity in macaque primary visual cortex revealed by large-scale two-photon imaging. Current Biology, 28 (1), 38–48.e3.CrossRefPubMed Tang, S., Lee, T.S., Li, M., Zhang, Y., Xu, Y., Liu, F., Teo, B., Jiang, H. (2018). Complex pattern selectivity in macaque primary visual cortex revealed by large-scale two-photon imaging. Current Biology, 28 (1), 38–48.e3.CrossRefPubMed
go back to reference Theunissen, F.E., David, S.V., Singh, N.C., Hsu, A., Vinje, W.E., Gallant, J.L. (2001). Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network: Computation in Neural Systems, 12(3), 289–316.CrossRef Theunissen, F.E., David, S.V., Singh, N.C., Hsu, A., Vinje, W.E., Gallant, J.L. (2001). Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network: Computation in Neural Systems, 12(3), 289–316.CrossRef
go back to reference Vintch, B., Movshon, J.A., Simoncelli, E.P. (2015). A convolutional subunit model for neuronal responses in macaque v1. Journal of Neuroscience, 35(44), 14829–14841.CrossRefPubMed Vintch, B., Movshon, J.A., Simoncelli, E.P. (2015). A convolutional subunit model for neuronal responses in macaque v1. Journal of Neuroscience, 35(44), 14829–14841.CrossRefPubMed
go back to reference Yamins, D., Hong, H., Cadieu, C.F., DiCarlo, J.J. (2013). Hierarchical modular optimization of convolutional networks achieves representations similar to macaque IT and human ventral stream. In Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (Eds.) Advances in neural information processing systems 26: 27th annual conference on neural information processing systems 2013. Proceedings of a meeting held December 5-8, 2013 (pp. 3093–3101). Lake Tahoe. Yamins, D., Hong, H., Cadieu, C.F., DiCarlo, J.J. (2013). Hierarchical modular optimization of convolutional networks achieves representations similar to macaque IT and human ventral stream. In Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (Eds.) Advances in neural information processing systems 26: 27th annual conference on neural information processing systems 2013. Proceedings of a meeting held December 5-8, 2013 (pp. 3093–3101). Lake Tahoe.
go back to reference Yamins, D.L.K., & DiCarlo, J.J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience, 19(3), 356–365.CrossRefPubMed Yamins, D.L.K., & DiCarlo, J.J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience, 19(3), 356–365.CrossRefPubMed
go back to reference Zhang, Y., Massot, C., Zhi, T., Papandreou, G., Yuille, A., Lee, T.S. (2016). Understanding neural representations in early visual areas using convolutional neural networks. In Neuroscience (SfN). Zhang, Y., Massot, C., Zhi, T., Papandreou, G., Yuille, A., Lee, T.S. (2016). Understanding neural representations in early visual areas using convolutional neural networks. In Neuroscience (SfN).
Metadata
Title
Convolutional neural network models of V1 responses to complex patterns
Authors
Yimeng Zhang
Tai Sing Lee
Ming Li
Fang Liu
Shiming Tang
Publication date
05-06-2018
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 1/2019
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-018-0687-7

Other articles of this Issue 1/2019

Journal of Computational Neuroscience 1/2019 Go to the issue

Premium Partner