Skip to main content
Top

2016 | OriginalPaper | Chapter

Convolutional Oriented Boundaries

Authors : Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez, Luc Van Gool

Published in: Computer Vision – ECCV 2016

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present Convolutional Oriented Boundaries (COB), which produces multiscale oriented contours and region hierarchies starting from generic image classification Convolutional Neural Networks (CNNs). COB is computationally efficient, because it requires a single CNN forward pass for contour detection and it uses a novel sparse boundary representation for hierarchical segmentation; it gives a significant leap in performance over the state-of-the-art, and it generalizes very well to unseen categories and datasets. Particularly, we show that learning to estimate not only contour strength but also orientation provides more accurate results. We perform extensive experiments on BSDS, PASCAL Context, PASCAL Segmentation, and MS-COCO, showing that COB provides state-of-the-art contours, region hierarchies, and object proposals in all datasets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kokkinos, I.: Pushing the boundaries of boundary detection using deep learning. In: ICLR (2016) Kokkinos, I.: Pushing the boundaries of boundary detection using deep learning. In: ICLR (2016)
2.
go back to reference Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV (2015) Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV (2015)
3.
go back to reference Bertasius, G., Shi, J., Torresani, L.: Deepedge: a multi-scale bifurcated deep network for top-down contour detection. In: CVPR (2015) Bertasius, G., Shi, J., Torresani, L.: Deepedge: a multi-scale bifurcated deep network for top-down contour detection. In: CVPR (2015)
4.
go back to reference Bertasius, G., Shi, J., Torresani, L.: High-for-low and low-for-high: efficient boundary detection from deep object features and its applications to high-level vision. In: ICCV (2015) Bertasius, G., Shi, J., Torresani, L.: High-for-low and low-for-high: efficient boundary detection from deep object features and its applications to high-level vision. In: ICCV (2015)
5.
go back to reference Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: CVPR (2015) Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: CVPR (2015)
6.
go back to reference Ganin, Y., Lempitsky, V.: \(N^4\)-Fields: Neural Network Nearest Neighbor Fields for Image Transforms. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 536–551. Springer, Heidelberg (2015) Ganin, Y., Lempitsky, V.: \(N^4\)-Fields: Neural Network Nearest Neighbor Fields for Image Transforms. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 536–551. Springer, Heidelberg (2015)
7.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
8.
go back to reference Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015) Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)
9.
go back to reference Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
10.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
11.
go back to reference Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001) Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)
13.
go back to reference Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: ICCV (2011) Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: ICCV (2011)
14.
go back to reference Mottaghi, R., Chen, X., Liu, X., Cho, N.G., Lee, S.W., Fidler, S., Urtasun, R., Yuille, A.: The role of context for object detection and semantic segmentation in the wild. In: CVPR (2014) Mottaghi, R., Chen, X., Liu, X., Cho, N.G., Lee, S.W., Fidler, S., Urtasun, R., Yuille, A.: The role of context for object detection and semantic segmentation in the wild. In: CVPR (2014)
15.
go back to reference Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. TPAMI 33(5), 898–916 (2011)CrossRef Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. TPAMI 33(5), 898–916 (2011)CrossRef
16.
go back to reference Pont-Tuset, J., Arbeláez, P., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. In: TPAMI (2016) Pont-Tuset, J., Arbeláez, P., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. In: TPAMI (2016)
17.
go back to reference Maninis, K., Pont-Tuset, J., Arbeláez, P., Gool, L.V.: Deep retinal image understanding. In: MICCAI (2016) Maninis, K., Pont-Tuset, J., Arbeláez, P., Gool, L.V.: Deep retinal image understanding. In: MICCAI (2016)
18.
go back to reference Bertasius, G., Shi, J., Torresani, L.: Semantic segmentation with boundary neural fields. In: CVPR (2016) Bertasius, G., Shi, J., Torresani, L.: Semantic segmentation with boundary neural fields. In: CVPR (2016)
19.
go back to reference Khoreva, A., Benenson, R., Omran, M., Hein, M., Schiele, B.: Weakly supervised object boundaries. In: CVPR (2016) Khoreva, A., Benenson, R., Omran, M., Hein, M., Schiele, B.: Weakly supervised object boundaries. In: CVPR (2016)
20.
go back to reference Li, Y., Paluri, M., Rehg, J.M., Dollár, P.: Unsupervised learning of edges. In: CVPR (2016) Li, Y., Paluri, M., Rehg, J.M., Dollár, P.: Unsupervised learning of edges. In: CVPR (2016)
21.
go back to reference Yang, J., Price, B., Cohen, S., Lee, H., Yang, M.H.: Object contour detection with a fully convolutional encoder-decoder network. In: CVPR (2016) Yang, J., Price, B., Cohen, S., Lee, H., Yang, M.H.: Object contour detection with a fully convolutional encoder-decoder network. In: CVPR (2016)
22.
go back to reference Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. TPAMI 18(12), 1163–1173 (1996)CrossRef Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. TPAMI 18(12), 1163–1173 (1996)CrossRef
24.
go back to reference Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV (2013) Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV (2013)
25.
go back to reference Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding (2014). arXiv preprint arXiv:1408.5093 Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding (2014). arXiv preprint arXiv:​1408.​5093
26.
go back to reference Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. TPAMI 26(5), 530–549 (2004)CrossRef Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. TPAMI 26(5), 530–549 (2004)CrossRef
27.
go back to reference Pont-Tuset, J., Marques, F.: Supervised evaluation of image segmentation and object proposal techniques. TPAMI 38(7), 1465–1478 (2016)CrossRef Pont-Tuset, J., Marques, F.: Supervised evaluation of image segmentation and object proposal techniques. TPAMI 38(7), 1465–1478 (2016)CrossRef
28.
go back to reference Ren, Z., Shakhnarovich, G.: Image segmentation by cascaded region agglomeration. In: CVPR (2013) Ren, Z., Shakhnarovich, G.: Image segmentation by cascaded region agglomeration. In: CVPR (2013)
29.
go back to reference Ren, Z., Shakhnarovich, G.: Image segmentation by cascaded region agglomeration. In: CVPR (2013) Ren, Z., Shakhnarovich, G.: Image segmentation by cascaded region agglomeration. In: CVPR (2013)
30.
go back to reference Shi, J., Malik, J.: Normalized cuts and image segmentation. TPAMI 22(8), 888–905 (2000)CrossRef Shi, J., Malik, J.: Normalized cuts and image segmentation. TPAMI 22(8), 888–905 (2000)CrossRef
31.
go back to reference Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59, 167–181 (2004) Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59, 167–181 (2004)
32.
go back to reference Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. TPAMI 24(5), 603–619 (2002)CrossRef Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. TPAMI 24(5), 603–619 (2002)CrossRef
33.
go back to reference Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014) Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)
34.
35.
go back to reference Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with regionproposal networks.In: NIPS (2015) Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with regionproposal networks.In: NIPS (2015)
36.
go back to reference Humayun, A., Li, F., Rehg, J.M.: The middle child problem: revisiting parametric min-cut and seeds for object proposals. In: ICCV (2015) Humayun, A., Li, F., Rehg, J.M.: The middle child problem: revisiting parametric min-cut and seeds for object proposals. In: ICCV (2015)
37.
go back to reference Krähenbühl, P., Koltun, V.: Learning to propose objects. In: CVPR (2015) Krähenbühl, P., Koltun, V.: Learning to propose objects. In: CVPR (2015)
38.
go back to reference Krähenbühl, P., Koltun, V.: Geodesic Object Proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 725–739. Springer, Heidelberg (2014) Krähenbühl, P., Koltun, V.: Geodesic Object Proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 725–739. Springer, Heidelberg (2014)
39.
go back to reference Uijlings, J.R.R., Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. IJCV 104(2), 154–171 (2013)CrossRef Uijlings, J.R.R., Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. IJCV 104(2), 154–171 (2013)CrossRef
40.
go back to reference Rantalankila, P., Kannala, J., Rahtu, E.: Generating object segmentation proposals using global and local search. In: CVPR (2014) Rantalankila, P., Kannala, J., Rahtu, E.: Generating object segmentation proposals using global and local search. In: CVPR (2014)
41.
go back to reference Humayun, A., Li, F., Rehg, J.M.: RIGOR: Recycling Inference in Graph Cuts for generating Object Regions. In: CVPR (2014) Humayun, A., Li, F., Rehg, J.M.: RIGOR: Recycling Inference in Graph Cuts for generating Object Regions. In: CVPR (2014)
42.
go back to reference Hosang, J., Benenson, R., Dollár, P., Schiele, B.: What makes for effective detection proposals? TPAMI 38(4), 814–830 (2016)CrossRef Hosang, J., Benenson, R., Dollár, P., Schiele, B.: What makes for effective detection proposals? TPAMI 38(4), 814–830 (2016)CrossRef
43.
go back to reference Pont-Tuset, J., Van Gool, L.: Boosting object proposals: From Pascal to COCO. In: ICCV (2015) Pont-Tuset, J., Van Gool, L.: Boosting object proposals: From Pascal to COCO. In: ICCV (2015)
44.
go back to reference Lin, T., Maire, M., Belongie, S., Bourdev, L.D., Girshick, R.B., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context (2014). arXiv:1405.0312 Lin, T., Maire, M., Belongie, S., Bourdev, L.D., Girshick, R.B., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context (2014). arXiv:​1405.​0312
Metadata
Title
Convolutional Oriented Boundaries
Authors
Kevis-Kokitsi Maninis
Jordi Pont-Tuset
Pablo Arbeláez
Luc Van Gool
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-46448-0_35

Premium Partner