Skip to main content
Top

2010 | OriginalPaper | Chapter

11. Correntropy for Random Processes: Properties and Applications in Signal Processing

Authors : Puskal Pokharel, Ignacio Santamaria, Jianwu Xu, Kyu-hwa Jeong, Weifeng Liu

Published in: Information Theoretic Learning

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The previous chapter defined cross-correntropy for the case of a pair of scalar random variables, and presented applications in statistical inference. This chapter extends the definition of correntropy for the case of random (or stochastic) processes, which are index sets of random variables. In statistical signal processing the index set is time; we are interested in random variables that are a function of time and the goal is to quantify their statistical dependencies (although the index set can also be defined over inputs or channels of multivariate random variables). The autocorrelation function, which measures the statistical dependency between random variables at two different times, is conventionally utilized for this goal. Hence, we generalize the definition of autocorrelation to an autocorrentropy function. The name correntropywas coined to reflect the fact that the function “looks like” correlation but the sum over the lags (or over dimensions of the multivariate random variable) is the information potential (i.e., the argument of Renyi’s quadratic entropy). The definition of cross-correntropy for random variables carries over to time series with a minor but important change in the domain of the variables that now are an index set of lags. When it is clear from the context, we simplify the terminology and refer to the different functions (autocorrentropy, or crosscorrentropy) simply as correntropy function, but keep the word “function” to distinguish them from Chapter 10 quantities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
5.
go back to reference Amari S., Cichocki A., Yang H., A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems, vol. 8 pp. 757–763, MIT Press, Cambridge, MA, 1996. Amari S., Cichocki A., Yang H., A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems, vol. 8 pp. 757–763, MIT Press, Cambridge, MA, 1996.
22.
go back to reference Beadle E., Schroeder J., Moran B., An overview of Renyi’s entropy and some potential applications, 42 nd Asilomar Conference on Signals, Systems and Computers, October 2008. Beadle E., Schroeder J., Moran B., An overview of Renyi’s entropy and some potential applications, 42 nd Asilomar Conference on Signals, Systems and Computers, October 2008.
29.
go back to reference Belouchrani A., Abed-Meraim K., Cardoso J., Moulines E., A blind source separation technique using second-order statistics, IEEE Trans. Signal Process. 45(2):434–444, 1997.CrossRef Belouchrani A., Abed-Meraim K., Cardoso J., Moulines E., A blind source separation technique using second-order statistics, IEEE Trans. Signal Process. 45(2):434–444, 1997.CrossRef
34.
go back to reference Bercher J., Vignat C., Estimating the Entropy of a Signal with Applications, IEEE Trans. Signal Process., 48(6):1687–1694, 2000.CrossRef Bercher J., Vignat C., Estimating the Entropy of a Signal with Applications, IEEE Trans. Signal Process., 48(6):1687–1694, 2000.CrossRef
42.
go back to reference Brown J., Puckette M., Calculation of a “narrowed” autocorrelation function, J. Acoust. Soc. Am., 85:1595–1601, 1989.CrossRef Brown J., Puckette M., Calculation of a “narrowed” autocorrelation function, J. Acoust. Soc. Am., 85:1595–1601, 1989.CrossRef
46.
go back to reference Cardoso J., Souloumiac A., Blind beamforming for non-Gaussian signals, Radar Signal Process., IEE Proc. F, 140(6):362–370, December 1993.CrossRef Cardoso J., Souloumiac A., Blind beamforming for non-Gaussian signals, Radar Signal Process., IEE Proc. F, 140(6):362–370, December 1993.CrossRef
62.
go back to reference Comon P., Independent component analysis, a new concept?, Signal Process., 36(3):287–314, 1994.CrossRefMATH Comon P., Independent component analysis, a new concept?, Signal Process., 36(3):287–314, 1994.CrossRefMATH
123.
go back to reference Gretton, A., Herbrich R., Smola A., Bousquet O., Schölkopf B., Kernel Methods for Measuring Independence,” J. Mach. Learn. Res., 6:2075–2129, 2005.MATHMathSciNet Gretton, A., Herbrich R., Smola A., Bousquet O., Schölkopf B., Kernel Methods for Measuring Independence,” J. Mach. Learn. Res., 6:2075–2129, 2005.MATHMathSciNet
134.
go back to reference Hardoon D., Szedmak S., Shawe-Taylor J., Canonical correlation analysis: an overview with application to learning methods, Neur. Comput., 16(12):2664–2699, Dec. 2004.CrossRef Hardoon D., Szedmak S., Shawe-Taylor J., Canonical correlation analysis: an overview with application to learning methods, Neur. Comput., 16(12):2664–2699, Dec. 2004.CrossRef
147.
go back to reference Hess W., Pitch Determination of Speech Signals. Springer, New York, 1993. Hess W., Pitch Determination of Speech Signals. Springer, New York, 1993.
150.
go back to reference Hild II K., Erdogmus D., Principe J., An analysis of entropy estimators for blind source separation, Signal Process., 86(1):182–194, 2006.CrossRefMATH Hild II K., Erdogmus D., Principe J., An analysis of entropy estimators for blind source separation, Signal Process., 86(1):182–194, 2006.CrossRefMATH
155.
go back to reference Hyvarinen A., Fast and Robust Fixed-Point Algorithms for Independent Component Analysis, IEEE Trans. Neural Netw., 10(3):626–634, 1999.CrossRef Hyvarinen A., Fast and Robust Fixed-Point Algorithms for Independent Component Analysis, IEEE Trans. Neural Netw., 10(3):626–634, 1999.CrossRef
166.
go back to reference Jeong K.H., Liu W., Principe J., The correntropy MACE filter, Pattern Recogn., 42(5):871–885, 2009.CrossRefMATH Jeong K.H., Liu W., Principe J., The correntropy MACE filter, Pattern Recogn., 42(5):871–885, 2009.CrossRefMATH
167.
go back to reference Jeong K.W., Principe J., Enhancing the correntropy MACE filter with random projections, Neurocomputing, 72(1–3):102–111, 2008.CrossRef Jeong K.W., Principe J., Enhancing the correntropy MACE filter with random projections, Neurocomputing, 72(1–3):102–111, 2008.CrossRef
172.
go back to reference Jutten C., Herault J., Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Process., 24:1–10, 1991.CrossRefMATH Jutten C., Herault J., Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Process., 24:1–10, 1991.CrossRefMATH
189.
go back to reference Kumar B., Minimum variance synthetic discriminant functions, J. Opt. Soc. Am., A3(10):1579–1584, 1986.CrossRef Kumar B., Minimum variance synthetic discriminant functions, J. Opt. Soc. Am., A3(10):1579–1584, 1986.CrossRef
190.
go back to reference Kumar B., Tutorial survey of composite filter designs for optical correlators, Appl. Opt., 31:4773–4801, 1992.CrossRef Kumar B., Tutorial survey of composite filter designs for optical correlators, Appl. Opt., 31:4773–4801, 1992.CrossRef
191.
go back to reference Kumar B., Savvides M., Xie C., Venkataramani K., Biometric verification with correlation filters, Appl. Opt., 43(2):391–402, 2004.CrossRef Kumar B., Savvides M., Xie C., Venkataramani K., Biometric verification with correlation filters, Appl. Opt., 43(2):391–402, 2004.CrossRef
198.
go back to reference Li R., Liu W., Principe J., A unifying criterion for blind source separation based on correntropy, Signal Process., Special Issue on ICA, 8(78):1872–1881. Li R., Liu W., Principe J., A unifying criterion for blind source separation based on correntropy, Signal Process., Special Issue on ICA, 8(78):1872–1881.
201.
go back to reference Liu W., Pokharel P., Principe J., Correntropy: Properties and applications in non Gaussian signal processing, IEEE Trans. Sig. Proc., 55(11):5286–5298, 2007.CrossRefMathSciNet Liu W., Pokharel P., Principe J., Correntropy: Properties and applications in non Gaussian signal processing, IEEE Trans. Sig. Proc., 55(11):5286–5298, 2007.CrossRefMathSciNet
203.
go back to reference Loève, M.M., Probability Theory, VanNostrand, Princeton, NJ, 1955.MATH Loève, M.M., Probability Theory, VanNostrand, Princeton, NJ, 1955.MATH
209.
go back to reference Mahalanobis A., Kumar B., Casasent D., Minimum average correlation energy filters, Appl. Opt., 26(17):3633–3640, 1987.CrossRef Mahalanobis A., Kumar B., Casasent D., Minimum average correlation energy filters, Appl. Opt., 26(17):3633–3640, 1987.CrossRef
210.
go back to reference Mahalanobis A., Forman A., Bower M., Cherry R., Day N., Multi-class SAR ATR using shift invariant correlation filters, Pattern Recogn., 27:619–626 Special Issue on Correlation Filters and Neural Networks, 1994. Mahalanobis A., Forman A., Bower M., Cherry R., Day N., Multi-class SAR ATR using shift invariant correlation filters, Pattern Recogn., 27:619–626 Special Issue on Correlation Filters and Neural Networks, 1994.
211.
go back to reference Mardia K., Jupp P., Directional Statistics, Wiley, New York, 2000.MATH Mardia K., Jupp P., Directional Statistics, Wiley, New York, 2000.MATH
217.
go back to reference Mercer J., Functions of positive and negative type, and their connection with the theory of integral equations, Philosoph. Trans. Roy. Soc. Lond., 209:415–446, 1909.CrossRefMATH Mercer J., Functions of positive and negative type, and their connection with the theory of integral equations, Philosoph. Trans. Roy. Soc. Lond., 209:415–446, 1909.CrossRefMATH
219.
go back to reference Mika S., Ratsch G., Weston J., Scholkopf B., Muller K., Fisher discriminant analysis with kernels. In Proceedings of IEEE International Workshop on Neural Networks for Signal Processing, pages 41–48, Madison, USA, August 23–25, 1999. Mika S., Ratsch G., Weston J., Scholkopf B., Muller K., Fisher discriminant analysis with kernels. In Proceedings of IEEE International Workshop on Neural Networks for Signal Processing, pages 41–48, Madison, USA, August 23–25, 1999.
235.
go back to reference Papoulis A., Probability, Random Variables and Stochastic Processes, McGraw-Hill, New York, 1965.MATH Papoulis A., Probability, Random Variables and Stochastic Processes, McGraw-Hill, New York, 1965.MATH
238.
go back to reference Parzen E., Statistical inference on time series by Hilbert space methods, Tech. Report 23, Stat. Dept., Stanford Univ., 1959. Parzen E., Statistical inference on time series by Hilbert space methods, Tech. Report 23, Stat. Dept., Stanford Univ., 1959.
242.
go back to reference Patterson R., Holdsworth J., Nimmo-Smith I., Rice P., SVOS final report, Part B: Implementing a gammatone filterbank, Appl. Psychol. Unit Rep.2341, 1988 Patterson R., Holdsworth J., Nimmo-Smith I., Rice P., SVOS final report, Part B: Implementing a gammatone filterbank, Appl. Psychol. Unit Rep.2341, 1988
248.
go back to reference Pokharel P., Xu J., Erdogmus D., Principe J., A closed form solution for a nonlinear Wiener filter, Proc. IEEE Int. Conf. Acoustics Speech and Signal Processing, Toulose, France, 2006. Pokharel P., Xu J., Erdogmus D., Principe J., A closed form solution for a nonlinear Wiener filter, Proc. IEEE Int. Conf. Acoustics Speech and Signal Processing, Toulose, France, 2006.
253.
go back to reference Principe J., Euliano N., Lefebvre C., Neural Systems: Fundamentals through Simulations, CD-ROM textbook, John Wiley, New York, 2000. Principe J., Euliano N., Lefebvre C., Neural Systems: Fundamentals through Simulations, CD-ROM textbook, John Wiley, New York, 2000.
273.
go back to reference Ross T., Worrell S., Velten V., Mossing J., Bryant M., Standard SAR ATR evaluation experiments using the MSTAR public release data set, in: Proceedings of the SPIE, vol. 3370, 1998, pp. 566–573. Ross T., Worrell S., Velten V., Mossing J., Bryant M., Standard SAR ATR evaluation experiments using the MSTAR public release data set, in: Proceedings of the SPIE, vol. 3370, 1998, pp. 566–573.
283.
go back to reference Santos J., Alexandre L., Sa J., The error entropy minimization algorithm for neural network classification, in A. Lofti (Ed.), Int Conf. Recent Advances in Soft Computing, pp. 92–97, 2004. Santos J., Alexandre L., Sa J., The error entropy minimization algorithm for neural network classification, in A. Lofti (Ed.), Int Conf. Recent Advances in Soft Computing, pp. 92–97, 2004.
288.
go back to reference Schölkopf, B., Burges, C.J.C., Smola, A.J. (Eds.), Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, 1999. Schölkopf, B., Burges, C.J.C., Smola, A.J. (Eds.), Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, 1999.
289.
go back to reference Schölkopf B. and Smola A., Learning with Kernels. MIT Press, Cambridge, MA, 2002 Schölkopf B. and Smola A., Learning with Kernels. MIT Press, Cambridge, MA, 2002
294.
go back to reference Shawe-Taylor J. Cristianini N., Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge, UK, 2004.CrossRef Shawe-Taylor J. Cristianini N., Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge, UK, 2004.CrossRef
300.
go back to reference Silverman B., Density Estimation for Statistics and Data Analysis, Chapman and Hall, London, 1986.CrossRefMATH Silverman B., Density Estimation for Statistics and Data Analysis, Chapman and Hall, London, 1986.CrossRefMATH
323.
329.
go back to reference Wang D., Brown G., Computational Auditory Scene Analysis—Principles, Algorithms, and Applications. Wiley, New York, 2006. Wang D., Brown G., Computational Auditory Scene Analysis—Principles, Algorithms, and Applications. Wiley, New York, 2006.
335.
go back to reference Wu H., Principe J., Simultaneous diagonalization in the frequency domain for source separation, Proc. First Int. Workshop on Ind. Comp. Anal. ICA’99, 245–250, Aussois, France, 1999. Wu H., Principe J., Simultaneous diagonalization in the frequency domain for source separation, Proc. First Int. Workshop on Ind. Comp. Anal. ICA’99, 245–250, Aussois, France, 1999.
338.
go back to reference Xie C., Savvides M., Kumar B., Kernel correlation filter based redundant class dependence feature analysis on FRGC2.0 data, in: Proc. second Int. Workshop Analysis Modeling Faces Gesture (AMFG), Beijing, 2005. Xie C., Savvides M., Kumar B., Kernel correlation filter based redundant class dependence feature analysis on FRGC2.0 data, in: Proc. second Int. Workshop Analysis Modeling Faces Gesture (AMFG), Beijing, 2005.
342.
go back to reference Xu J., Principe J., A pitch detector based on a generalized correlation function, IEEE Trans. Audio, Speech Lang. Process., 16(8):1420–1432, 2008.CrossRef Xu J., Principe J., A pitch detector based on a generalized correlation function, IEEE Trans. Audio, Speech Lang. Process., 16(8):1420–1432, 2008.CrossRef
343.
go back to reference Xu J., Nonlinear Signal Processing Based on Reproducing Kernel Hilbert Space, Ph.D. Thesis, University of Florida, Gainesville, 2008. Xu J., Nonlinear Signal Processing Based on Reproducing Kernel Hilbert Space, Ph.D. Thesis, University of Florida, Gainesville, 2008.
Metadata
Title
Correntropy for Random Processes: Properties and Applications in Signal Processing
Authors
Puskal Pokharel
Ignacio Santamaria
Jianwu Xu
Kyu-hwa Jeong
Weifeng Liu
Copyright Year
2010
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-1570-2_11

Premium Partner