Skip to main content
Top
Published in: Measurement Techniques 6/2023

02-10-2023 | FUNDAMENTAL PROBLEMS OF METROLOGY

Cosmological Distance Scale. Part 16: Hubble Dipole

Author: S. F. Levin

Published in: Measurement Techniques | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper considers significant cosmological events that occurred in 2007: the reason for discrepancies in Hubble constant estimates was established; the galactic polar redshift anisotropy within the spectra of extragalactic sources was indicated; a cold spot of cosmic microwave background was detected; the so-called extraordinary evidence of the accelerated expansion of the universe was obtained. This evidence is based on analyzing data on Type Ia supernovae belonging to the Hubble Deep and Ultra Deep Fields. A chain of results is described that led to an alternative hypothesis — acceleration of large-scale galactic flows under the action of the gravitational dipoles of large-scale inhomogeneity of the universe in the form of “giant void–massive supercluster” pairs on opposite sides of the celestial sphere. The author presents the results of testing (for inadequacy) the Friedmann–Robertson–Walker isotropic model of the calibration function of the cosmological redshift distance scale adopted in this extraordinary evidence. It is shown that structural changes and rank inversions of the isotropic model are interpreted as the action of gravitational dipoles due to the existence of a more accurate anisotropic model of the calibration function of the cosmological redshift distance scale. This hypothesis is an alternative to that about the accelerated expansion of the universe. It is shown that the Hubble Deep and Ultra Deep Fields are a gravitational dipole — Hubble dipole.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Equatorial coordinates of epoch J1950.0 (α is the right ascension, δ is the declination): the North Galactic Pole PN (α = 12h40m; δ = +28°) in the constellation Coma Berenices, South Galactic Pole PS (α = 0h40m; δ = +28°) in the constellation Sculptor.
 
2
The Sun is moving at 369.82 ± 0.11 km/s toward the CMB Dipole+ at (α = 11h9m; δ = −6o40ʹ) [12].
 
3
CMB antapex in the constellation Pisces — {l = (84.021 ± 0.011)o; b = (−48.253 ± 0.005)o} [28] or (α = 23h09m14s; δ = +6o40ʹ20.4ʺ). Suspiciously close are "Pisces Austrinus void + Cetus Supervoid" at (α = 0h–2h; δ = +5°–+15°) and "Aquarius Supervoid" at (α = 20h32m– 23h50m; δ = −25o30ʹ–+2o45ʹ); however, they are not mentioned; the supercluster "Pisces — Cetus Supercluster" at (α = 23h58m–1h08m; δ = −9o18ʹ–−31o36ʹ) can weaken the effect of the repeller. Of note is that the estimates of the CMB Dipole coordinates diverge in [26] and [28].
 
4
The point (α = 22h23m; δ = +38o17ʹ) in the constellation Lacerta. In terms of angular position, the nearest void is the Pegasus void at (α = 22h; δ = +15°).
 
5
A hypercluster of superclusters is located here.
 
6
The point (α = 1h44m; δ = −13o20ʹ) in the constellation Cetus.
 
7
R 50.2.004-2000. GSI. Characterization of Mathematical Models Representing the Dependences between Physical Quantities when Solving Measurement Problems. Basic Provisions.
 
8
The names of dipole elements (giant voids and galaxy superclusters) are in bold; curly brackets indicate that the data scatter refers to both coordinates; a slash indicates that the galactic coordinates were converted into equatorial coordinates by the present author and are not available in the cited source.
 
9
In equatorial coordinates — (α = 3h10m56.82s; δ = −20o37ʹ24.7ʺ).
 
10
SCl — designation of superclusters in the catalog.
 
Literature
8.
go back to reference S. F. Levin, in: Abstracts of Papers X Russian Gravitation Conference "Teoreticheskie i Eksperimentalʹnye Problemy Obshchej Teorii OtnositelʹNosti i Gravitacii," RGO Publ., Moscow, p. 245 (1999). S. F. Levin, in: Abstracts of Papers X Russian Gravitation Conference "Teoreticheskie i Eksperimentalʹnye Problemy Obshchej Teorii OtnositelʹNosti i Gravitacii," RGO Publ., Moscow, p. 245 (1999).
9.
go back to reference S. F. Levin, On Spatial Anisotropy of Red Shift in Spectrums of Ungalaxy Sources, in: Proc. of XV Int. Sci. Meeting PIRT-2009: Physical Interpretations of Relativity Theory, Moscow, 6–9 July, 2009, BMSTU, Moscow (2009), pp. 234–240. S. F. Levin, On Spatial Anisotropy of Red Shift in Spectrums of Ungalaxy Sources, in: Proc. of XV Int. Sci. Meeting PIRT-2009: Physical Interpretations of Relativity Theory, Moscow, 6–9 July, 2009, BMSTU, Moscow (2009), pp. 234–240.
11.
go back to reference S. F. Levin, Identifi cation of Red Shift Anisotropy on the Basis of the Exact Decision of Mattig Equation, in: Abstracts of Reports VI Int. Meeting "Finsler Extensions of Relativity Theory," Moscow, Fryazino, Russia, November 1–7, 2010; BMSTU — RIHSGP, Moscow (2010). S. F. Levin, Identifi cation of Red Shift Anisotropy on the Basis of the Exact Decision of Mattig Equation, in: Abstracts of Reports VI Int. Meeting "Finsler Extensions of Relativity Theory," Moscow, Fryazino, Russia, November 1–7, 2010; BMSTU — RIHSGP, Moscow (2010).
13.
go back to reference S. Levin, Kontr.-izmer. Pribory Sist., No. 2, 35–37 (2010). S. Levin, Kontr.-izmer. Pribory Sist., No. 2, 35–37 (2010).
14.
go back to reference S. Levin, Kontr.-izmer. Pribory Sist., No. 5, 36–38 (2012). S. Levin, Kontr.-izmer. Pribory Sist., No. 5, 36–38 (2012).
16.
go back to reference S. F. Levin, Photometric Scale of Cosmological Distances: Anisotropy and Nonlinearity, Isotropy and Zero-Point, in: Proc. Int. Meeting PIRT-2013: Physical Interpretation of Relativity Theory, July 1–4, 2013, Moscow, Eds. M. C. Duff y et al.; BMSTU, Moscow (2013), pp. 210–219. S. F. Levin, Photometric Scale of Cosmological Distances: Anisotropy and Nonlinearity, Isotropy and Zero-Point, in: Proc. Int. Meeting PIRT-2013: Physical Interpretation of Relativity Theory, July 1–4, 2013, Moscow, Eds. M. C. Duff y et al.; BMSTU, Moscow (2013), pp. 210–219.
41.
go back to reference J. Hopkins, Glossary of Astronomy and Astrophysics, Foreword by S. Chandrasekhar, The University of Chicago Press, Chicago (1976). J. Hopkins, Glossary of Astronomy and Astrophysics, Foreword by S. Chandrasekhar, The University of Chicago Press, Chicago (1976).
42.
go back to reference S. F. Levin, Optimalʹnaya Interpolyatsionnaya Filʹtratsiya Statisticheskikh Kharakteristik Sluchajnykh Funktsij v Determinirovannoj Versii Metoda Monte-Karlo i Zakon Krasnogo Smeshcheniya, AN SSSR, Nauchnyj Sovet po Kompleksnoj Probleme "Kibernetika," Moscow (1980). S. F. Levin, Optimalʹnaya Interpolyatsionnaya Filʹtratsiya Statisticheskikh Kharakteristik Sluchajnykh Funktsij v Determinirovannoj Versii Metoda Monte-Karlo i Zakon Krasnogo Smeshcheniya, AN SSSR, Nauchnyj Sovet po Kompleksnoj Probleme "Kibernetika," Moscow (1980).
43.
go back to reference E. A. Milne, Relativity, Gravitational and World Structure, Clarendon Press, Oxford (1935).MATH E. A. Milne, Relativity, Gravitational and World Structure, Clarendon Press, Oxford (1935).MATH
46.
go back to reference G. Burbidge and M. Burbidge, Quasi-Stellar Objects, W. H. Freeman and Company, San Francisco, London (1967). G. Burbidge and M. Burbidge, Quasi-Stellar Objects, W. H. Freeman and Company, San Francisco, London (1967).
47.
go back to reference J. L. Synge, Relativity: The General Theory, North-Holland Publishing Company, Amsterdam (1960).MATH J. L. Synge, Relativity: The General Theory, North-Holland Publishing Company, Amsterdam (1960).MATH
48.
go back to reference S. F. Levin, A. N. Lisenkov, O. V. Senʹko, and E. I. Kharatʹyan, Sistema Metrologicheskogo Soprovozhdeniya Staticheskikh Izmeritelʹnykh Zadach "MMK-stat M," user manual, VC RAN Publ., Gosstandart RF, Moscow (1998). S. F. Levin, A. N. Lisenkov, O. V. Senʹko, and E. I. Kharatʹyan, Sistema Metrologicheskogo Soprovozhdeniya Staticheskikh Izmeritelʹnykh Zadach "MMK-stat M," user manual, VC RAN Publ., Gosstandart RF, Moscow (1998).
49.
go back to reference S. F. Levin, Kontr.-izmer. Pribory Sist., No. 6, 36–37 (2009). S. F. Levin, Kontr.-izmer. Pribory Sist., No. 6, 36–37 (2009).
50.
go back to reference S. F. Levin, Kontr.-izmer. Pribory Sist., No. 1, 35–36 (2010). S. F. Levin, Kontr.-izmer. Pribory Sist., No. 1, 35–36 (2010).
51.
go back to reference S. F. Levin, Kontr.-izmer. Pribory Sist., No. 2, 36–37 (2010). S. F. Levin, Kontr.-izmer. Pribory Sist., No. 2, 36–37 (2010).
Metadata
Title
Cosmological Distance Scale. Part 16: Hubble Dipole
Author
S. F. Levin
Publication date
02-10-2023
Publisher
Springer US
Published in
Measurement Techniques / Issue 6/2023
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-023-02237-2

Other articles of this Issue 6/2023

Measurement Techniques 6/2023 Go to the issue