Skip to main content
Top
Published in: Measurement Techniques 1/2019

11-05-2019 | FUNDAMENTAL PROBLEMS IN METROLOGY

Cosmological distance scale. Part 8. The scale factor

Author: S. F. Levin

Published in: Measurement Techniques | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Structurally parametric identification of the characteristics of the dispersion in the Friedmann–Robertson–Walker model and its approximations as models for cosmological distance scales are examined on the basis of the data on type SN Ia supernovae used to detect the “acceleration in the expansion of the universe.” It is shown that the deviations from the position characteristics of these models as a function of distance (the scale factor) are multiplicative. Estimates of the convolutions of the random and nonparametric unexcluded systematic components of the inadequacy errors of the Friedmann–Robertson–Walker model are obtained in the class of truncated distributions with zero curvature parameter and a Heckmann approximation with anisotropy and interpolation models taken into account.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The scale factor for the cosmological distance scale should not be confused with the metric parameter of the space, which has the same name and a close physical significance.
 
2
Matt Visser is a professor of mathematics at Victoria and Wellington University (New Zealand).
 
3
Prof. Otto Hermann Leopold Heckmann was the head of the observatory and department of astronomy at the University of Hamburg (Germany) in 1942 and was elected president of the International Astronomical Union in 1967.
 
4
The limits of the possible deviations from the estimates are not indicated in Ref. 3.
 
5
The estimates of DL are given in accordance with a computational protocol in terms of the distance moduli μ [2, 3]. When this form is used in the following to represent the results, the significant figures will be indicted in semi-bold print.
 
Literature
1.
2.
go back to reference A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J., 116, 1009–1038 (1998).ADSCrossRef A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J., 116, 1009–1038 (1998).ADSCrossRef
3.
go back to reference S. Perlmutter et al., “Measurements of Ω and Λ from 42 high-red shift supernovae,” Astrophys. J., 517, 565–586 (1999).ADSCrossRef S. Perlmutter et al., “Measurements of Ω and Λ from 42 high-red shift supernovae,” Astrophys. J., 517, 565–586 (1999).ADSCrossRef
4.
go back to reference K. Lang, Astrophysical Formulas. Pt. 2 [Russian translation], Mir, Moscow (1978). K. Lang, Astrophysical Formulas. Pt. 2 [Russian translation], Mir, Moscow (1978).
5.
go back to reference O. V. Verkhodanov, “Cosmological results from the ‘Planck’ space mission. Comparison with WMAP and BICEP-2 experimental data,” Usp. Fiz. Nauk, 186, No. 1, 3–46 (2016).CrossRef O. V. Verkhodanov, “Cosmological results from the ‘Planck’ space mission. Comparison with WMAP and BICEP-2 experimental data,” Usp. Fiz. Nauk, 186, No. 1, 3–46 (2016).CrossRef
6.
go back to reference P. Ade et al., Planck Collaboration, “Planck 2015 results. XIII. Cosmological parameters,” Astron. & Astrophys., 594. A13 (2016). P. Ade et al., Planck Collaboration, “Planck 2015 results. XIII. Cosmological parameters,” Astron. & Astrophys., 594. A13 (2016).
7.
go back to reference A. G. Riess et al., “A 2.4% determination of the local value of the Hubble constant,” Preprint Astrophys. J., http://arXiv:1604.01424v3 [astro-ph.CO] 9 Jun 2016. A. G. Riess et al., “A 2.4% determination of the local value of the Hubble constant,” Preprint Astrophys. J., http://​arXiv:1604.01424v3 [astro-ph.CO] 9 Jun 2016.
8.
go back to reference Planck Collaboration, “Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth,” Astron. & Astrophys. Manusc., http://arXiv:1605.02985v2 [astro-ph.CO] 26 May 2016, acc Dec. 31, 2017. Planck Collaboration, “Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth,” Astron. & Astrophys. Manusc., http://​arXiv:1605.02985v2 [astro-ph.CO] 26 May 2016, acc Dec. 31, 2017.
9.
go back to reference M. Visser, “Jerk, snap, and the cosmological equation of state,” http://arXiv:gr-qc/0309109v4 31 Mar 2004. M. Visser, “Jerk, snap, and the cosmological equation of state,” http://​arXiv:gr-qc/0309109v4 31 Mar 2004.
11.
go back to reference B. P. Schmidt, The Path to Measuring an Accelerating Universe: Nobel Lecture, Dec. 8, 2011. B. P. Schmidt, The Path to Measuring an Accelerating Universe: Nobel Lecture, Dec. 8, 2011.
13.
go back to reference G. Hinshaw et al., “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results,” arXiv:1212.5226v3 [astro-ph.CO] June 4, 2013, acc. July 12, 2018. G. Hinshaw et al., “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results,” arXiv:1212.5226v3 [astro-ph.CO] June 4, 2013, acc. July 12, 2018.
14.
go back to reference P. A. R. Ade et al., Planck Collaboration, “Planck 2015 results: XIII. Cosmological parameters,” Astron. & Astrophys., 594, A13 (2016), arXiv:1502.01589v2 [astro-ph.CO] 6 Feb 2015, acc. Dec. 11, 2015. P. A. R. Ade et al., Planck Collaboration, “Planck 2015 results: XIII. Cosmological parameters,” Astron. & Astrophys., 594, A13 (2016), arXiv:1502.01589v2 [astro-ph.CO] 6 Feb 2015, acc. Dec. 11, 2015.
15.
go back to reference W. L. Freedman, “Cosmology at a crossroads: Tension with the Hubble constant,” arxiv.org: 1706.02739 13 Jul 2017, acc. Dec. 3, 2017. W. L. Freedman, “Cosmology at a crossroads: Tension with the Hubble constant,” arxiv.​org: 1706.02739 13 Jul 2017, acc. Dec. 3, 2017.
16.
go back to reference W. L. Freedman, B. F. Madore, B. K. Gibson, et al., “Final results from the Hubble Space Telescope Key Project to measure the Hubble constant,” Astrophys. J., 553, 47–72 (2001).ADSCrossRef W. L. Freedman, B. F. Madore, B. K. Gibson, et al., “Final results from the Hubble Space Telescope Key Project to measure the Hubble constant,” Astrophys. J., 553, 47–72 (2001).ADSCrossRef
17.
go back to reference S. F. Levin, “The mathematical theory of measurement problems: Applications. Calibration in space and on earth – a metrological and scientifi c impasse?” Kontr.-Izmer. Prib. Sistemy, No. 2, 25–38 (2018). S. F. Levin, “The mathematical theory of measurement problems: Applications. Calibration in space and on earth – a metrological and scientifi c impasse?” Kontr.-Izmer. Prib. Sistemy, No. 2, 25–38 (2018).
18.
go back to reference S. F. Levin, “Cosmological distance scale. Part 7. A new special case with the Hubble constant and anisotropic models,” Izmer. Tekhn., No. 11, 15–21 (2018). S. F. Levin, “Cosmological distance scale. Part 7. A new special case with the Hubble constant and anisotropic models,” Izmer. Tekhn., No. 11, 15–21 (2018).
20.
go back to reference S. F. Levin, Optimal Interpolation Filtration of Statistical Characteristics of Random Functions in a Deterministic Version of the Monte-Carlo Method and the Red Shift Law, NSK AN SSSR, Moscow (1980). S. F. Levin, Optimal Interpolation Filtration of Statistical Characteristics of Random Functions in a Deterministic Version of the Monte-Carlo Method and the Red Shift Law, NSK AN SSSR, Moscow (1980).
21.
go back to reference S. F. Levin, “Measurement problem of structural-parametric identification on supernovae type SN Ia for cosmological distances scale of red shift based,” Physical Interpretations of Relativity Theory: Proc. Int. Meeting, Bauman Moscow State Technical University, Moscow, June 29 – July 2, 2015, BMSTU, Moscow (2015), pp. 299–310. S. F. Levin, “Measurement problem of structural-parametric identification on supernovae type SN Ia for cosmological distances scale of red shift based,” Physical Interpretations of Relativity Theory: Proc. Int. Meeting, Bauman Moscow State Technical University, Moscow, June 29 – July 2, 2015, BMSTU, Moscow (2015), pp. 299–310.
22.
go back to reference S. F. Levin, “The measurement problem of identifying the error function,” Zakonodat. Prikl. Metrol., No. 4, 27–33 (2016). S. F. Levin, “The measurement problem of identifying the error function,” Zakonodat. Prikl. Metrol., No. 4, 27–33 (2016).
23.
go back to reference S. F. Levin, “Statistical methods for the theory of measurement problems in cosmology,” Yad. Fiz. Inzhinir., 4, No. 9–10, 926–932 (2013). S. F. Levin, “Statistical methods for the theory of measurement problems in cosmology,” Yad. Fiz. Inzhinir., 4, No. 9–10, 926–932 (2013).
24.
go back to reference I. Vuchkov, L. Boyadzhieva, and E. Solakov, Applied Linear Regression Analysis [Russian translation], Finansy i Statistika, Moscow (1987). I. Vuchkov, L. Boyadzhieva, and E. Solakov, Applied Linear Regression Analysis [Russian translation], Finansy i Statistika, Moscow (1987).
25.
go back to reference S. F. Levin and A. P. Blinov, “Scientifi c-methodological support for guaranteed solution of metrological problems by probabilistic-statistical methods,” Izmer. Tekhn., No. 12, 5–8 (1988). S. F. Levin and A. P. Blinov, “Scientifi c-methodological support for guaranteed solution of metrological problems by probabilistic-statistical methods,” Izmer. Tekhn., No. 12, 5–8 (1988).
26.
go back to reference S. F. Levin, “Metrological certifi cation and accompaniment of programs for statistical processing of data,” Izmer. Tekhn., No. 12, 16–18 (1988). S. F. Levin, “Metrological certifi cation and accompaniment of programs for statistical processing of data,” Izmer. Tekhn., No. 12, 16–18 (1988).
27.
go back to reference S. F. Levin, “Cosmological distance scale. Part 5. Metrological expert opinion based on type SN Ia supernovae,” Izmer. Tekhn., No. 8, 3–10 (2016). S. F. Levin, “Cosmological distance scale. Part 5. Metrological expert opinion based on type SN Ia supernovae,” Izmer. Tekhn., No. 8, 3–10 (2016).
28.
go back to reference M. V. Pruzhinskaya, Supernova Stars, Gamma-Bursts, and the Accelerated Expansion of the Universe: Auth. Abstr. Cand. Dissert. in Phys.-Math. Sci., Lomonosov Moscow State University, Moscow (2014). M. V. Pruzhinskaya, Supernova Stars, Gamma-Bursts, and the Accelerated Expansion of the Universe: Auth. Abstr. Cand. Dissert. in Phys.-Math. Sci., Lomonosov Moscow State University, Moscow (2014).
29.
go back to reference S. F. Levin, “Cosmological distance scale. Part 6. Statistical anisotropy of red shift,” Izmer. Tekhn., No. 5, 3–6 (2017). S. F. Levin, “Cosmological distance scale. Part 6. Statistical anisotropy of red shift,” Izmer. Tekhn., No. 5, 3–6 (2017).
30.
go back to reference S. F. Levin, “Mathematical theory of measurement problems: Applications. Statistical monitoring procedures for high precision measurement,” Kontr.-Izmer. Prib. Sistemy, No. 3, 8–11 (2018). S. F. Levin, “Mathematical theory of measurement problems: Applications. Statistical monitoring procedures for high precision measurement,” Kontr.-Izmer. Prib. Sistemy, No. 3, 8–11 (2018).
Metadata
Title
Cosmological distance scale. Part 8. The scale factor
Author
S. F. Levin
Publication date
11-05-2019
Publisher
Springer US
Published in
Measurement Techniques / Issue 1/2019
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-019-01578-1

Other articles of this Issue 1/2019

Measurement Techniques 1/2019 Go to the issue