Skip to main content
Top
Published in: Designs, Codes and Cryptography 3/2024

02-07-2023

Counting the number of non-isotopic Taniguchi semifields

Authors: Faruk Göloğlu, Lukas Kölsch

Published in: Designs, Codes and Cryptography | Issue 3/2024

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We investigate the isotopy question for Taniguchi semifields. We give a complete characterization when two Taniguchi semifields are isotopic. We further give precise upper and lower bounds for the total number of non-isotopic Taniguchi semifields, proving that there are around \(p^{m+s}\) non-isotopic Taniguchi semifields of order \(p^{2m}\) where s is the largest divisor of m with \(2\,s\ne m\). This result proves that the family of Taniguchi semifields is (asymptotically) the largest known family of semifields of odd order. The key ingredient of the proofs is a technique to determine isotopy that uses group theory to exploit the existence of certain large subgroups of the autotopism group of a semifield.
Literature
1.
go back to reference Albert, A.A.: Finite division algebras and finite planes. In: Proceedings of Symposia in Applied Mathematics Volume 10, American Mathematical Society, Providence, R.I., (1960), pp. 53–70. Albert, A.A.: Finite division algebras and finite planes. In: Proceedings of Symposia in Applied Mathematics Volume 10, American Mathematical Society, Providence, R.I., (1960), pp. 53–70.
2.
go back to reference Bartoli D., Bierbrauer J., Kyureghyan G., Giulietti M., Marcugini S., Pambianco F.: A family of semifields in characteristic 2. J. Algebr. Comb. 45(2), 455–473 (2017).MathSciNetCrossRef Bartoli D., Bierbrauer J., Kyureghyan G., Giulietti M., Marcugini S., Pambianco F.: A family of semifields in characteristic 2. J. Algebr. Comb. 45(2), 455–473 (2017).MathSciNetCrossRef
3.
go back to reference Bierbrauer J.: Projective polynomials, a projection construction and a family of semifields. Des. Codes Cryptogr. 79(1), 183–200 (2016).MathSciNetCrossRef Bierbrauer J.: Projective polynomials, a projection construction and a family of semifields. Des. Codes Cryptogr. 79(1), 183–200 (2016).MathSciNetCrossRef
4.
go back to reference Antonia W.: Bluher, on \(x^{q+1}+ax+b\). Finite Fields Appl. 10(3), 285–305 (2004).MathSciNet Antonia W.: Bluher, on \(x^{q+1}+ax+b\). Finite Fields Appl. 10(3), 285–305 (2004).MathSciNet
5.
go back to reference Dickson L.E.: On commutative linear algebras in which division is always uniquely possible. Trans. Am. Math. Soc. 7(4), 514–522 (1906).MathSciNetCrossRef Dickson L.E.: On commutative linear algebras in which division is always uniquely possible. Trans. Am. Math. Soc. 7(4), 514–522 (1906).MathSciNetCrossRef
6.
7.
go back to reference Huppert B., Blackburn N.: Finite Groups. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 242. Springer, Berlin (1982). Huppert B., Blackburn N.: Finite Groups. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 242. Springer, Berlin (1982).
8.
go back to reference Johnson N.L., Marino G., Polverino O., Trombetti R.: On a generalization of cyclic semifields. J. Algeb. Comb. 29(1), 1–34 (2009).MathSciNetCrossRef Johnson N.L., Marino G., Polverino O., Trombetti R.: On a generalization of cyclic semifields. J. Algeb. Comb. 29(1), 1–34 (2009).MathSciNetCrossRef
11.
go back to reference Kantor W.M., Liebler R.A.: Semifields arising from irreducible semilinear transformations. J. Aust. Math. Soc. 85(3), 333–339 (2008).MathSciNetCrossRef Kantor W.M., Liebler R.A.: Semifields arising from irreducible semilinear transformations. J. Aust. Math. Soc. 85(3), 333–339 (2008).MathSciNetCrossRef
12.
go back to reference Kantor W.M., Williams M.E.: Symplectic semifield planes and \(\mathbb{Z}_4\)-linear codes. Trans. Am. Math. Soc. 356(3), 895–938 (2004). Kantor W.M., Williams M.E.: Symplectic semifield planes and \(\mathbb{Z}_4\)-linear codes. Trans. Am. Math. Soc. 356(3), 895–938 (2004).
13.
go back to reference Kaspers, C.: Equivalence problems of almost perfect nonlinear functions and disjoint difference families, Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, (2021). Kaspers, C.: Equivalence problems of almost perfect nonlinear functions and disjoint difference families, Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, (2021).
14.
go back to reference Kaspers C., Zhou Y.: The number of almost perfect nonlinear functions grows exponentially. J. Cryptol. 34, 1–4 (2021).MathSciNetCrossRef Kaspers C., Zhou Y.: The number of almost perfect nonlinear functions grows exponentially. J. Cryptol. 34, 1–4 (2021).MathSciNetCrossRef
16.
go back to reference Lavrauw, M., Polverino, O.: Finite semifields. In: Current Research Topics in Galois Geometry (2011), pp. 131–160. Lavrauw, M., Polverino, O.: Finite semifields. In: Current Research Topics in Galois Geometry (2011), pp. 131–160.
18.
go back to reference Pott A., Schmidt K.-U., Zhou Y.: Semifields, Relative Difference Sets, and Bent Functions, pp. 161–178. De Gruyter, Algebraic curves and finite fields, Berlin (2014). Pott A., Schmidt K.-U., Zhou Y.: Semifields, Relative Difference Sets, and Bent Functions, pp. 161–178. De Gruyter, Algebraic curves and finite fields, Berlin (2014).
19.
go back to reference Purpura W.: Counting the generalized twisted fields. Note di Matematica 27(1), 53–59 (2007).MathSciNet Purpura W.: Counting the generalized twisted fields. Note di Matematica 27(1), 53–59 (2007).MathSciNet
20.
go back to reference Sheekey J.: MRD Codes: Constructions and Connections, Combinatorics and Finite Fields, pp. 255–286. de Gruyter, Berlin (2019). Sheekey J.: MRD Codes: Constructions and Connections, Combinatorics and Finite Fields, pp. 255–286. de Gruyter, Berlin (2019).
21.
go back to reference Sheekey J.: New semifields and new MRD codes from skew polynomial rings. J. Lond. Math. Soc. 101(1), 432–456 (2020).MathSciNetCrossRef Sheekey J.: New semifields and new MRD codes from skew polynomial rings. J. Lond. Math. Soc. 101(1), 432–456 (2020).MathSciNetCrossRef
Metadata
Title
Counting the number of non-isotopic Taniguchi semifields
Authors
Faruk Göloğlu
Lukas Kölsch
Publication date
02-07-2023
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 3/2024
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-023-01262-0

Other articles of this Issue 3/2024

Designs, Codes and Cryptography 3/2024 Go to the issue

Premium Partner