Skip to main content
Top

2015 | OriginalPaper | Chapter

83. Coupling Floating Wind Turbines with Large- Scale Air-Conditioning Systems Through Deep Sea Water Pumping: Case Studies of System Performance in European Deep Waters

Authors : Tonio Sant, Robert N. Farrugia, David Arroyo López-Carro

Published in: Renewable Energy in the Service of Mankind Vol I

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents a novel concept for utilising offshore-floating wind turbines to concurrently exploit cold deep sea water (DSW) for large-scale cooling applications, as well as electricity production. This concept utilises wind turbine-driven pumps that extract cold DSW and pump it across a high-pressure pipeline to a land-based hydroelectric power station coupled to a centralised air-conditioning (AC) unit of a district cooling system. The wind-driven intermittent supply of cold water exiting the hydroelectric station is diverted to the condenser of the unit and mixed with sea surface water (SSW) to maintain a steady flow. The use of DSW lowers the condensation temperature of the refrigerant in the AC unit, resulting in an improved coefficient of performance for cooling conditions. This chapter investigates the potential application of the concept described above to four European deep offshore sites located in the Mediterranean Sea: the Greek Islands, Malta, the South of France and Spain. The numerical model used to compute the energy yield characteristics at these sites assumes a single offshore wind turbine system with modules for the wind turbine–pump assembly, the deep sea thermocline formations and the frictional/thermal losses across the pipeline and the hydroelectric turbine. Another module is dedicated to the thermodynamic refrigeration cycle for the AC unit. The study confirmed that although the losses incurred in transmitting energy from offshore wind turbines through the DSW pipeline are larger than those for conventional wind turbines relying on electrical cables, such losses may be partially or fully compensated for by the superior performance of the wind turbine-driven hydraulic pumps at high wind speeds and by the energy savings incurred in AC plants through DSW utilisation. The latter savings were found to be the highest for the Greek Islands due to favourable wind conditions also prevailing during the hot summer months.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference European Wind Energy Association (EWEA) (2013) Deep water—The next step for offshore wind energy. July European Wind Energy Association (EWEA) (2013) Deep water—The next step for offshore wind energy. July
2.
go back to reference Diepeveen N (2013) On the application of fluid power transmission in offshore wind turbines. Delft University of Technology, Delft, Ph. D. Thesis Diepeveen N (2013) On the application of fluid power transmission in offshore wind turbines. Delft University of Technology, Delft, Ph. D. Thesis
4.
go back to reference Jones JA, Bruce A, Lam AS (2013) Advanced performance hydraulic wind energy. IEEE Green Technologies Conference, Denver, April Jones JA, Bruce A, Lam AS (2013) Advanced performance hydraulic wind energy. IEEE Green Technologies Conference, Denver, April
5.
go back to reference Sant T, Farrugia RN (2013) Performance modelling of an offshore floating wind turbine-driven deep sea water extraction system for combined power and thermal energy production: a case study in a central Mediterranean context. In: Proceedings of the ASME 32nd international conference on ocean, offshore and Arctic engineering. Nantes, June. doi:10.1115/OMAE2013–10714 Sant T, Farrugia RN (2013) Performance modelling of an offshore floating wind turbine-driven deep sea water extraction system for combined power and thermal energy production: a case study in a central Mediterranean context. In: Proceedings of the ASME 32nd international conference on ocean, offshore and Arctic engineering. Nantes, June. doi:10.1115/OMAE2013–10714
6.
go back to reference Buhagiar D, Sant T (2014) Steady-state analysis of a conceptual offshore wind turbine driven electricity and thermocline energy extraction plant. Renew Energy 68:853–867CrossRef Buhagiar D, Sant T (2014) Steady-state analysis of a conceptual offshore wind turbine driven electricity and thermocline energy extraction plant. Renew Energy 68:853–867CrossRef
7.
go back to reference Sant T, Buhagiar D, Farrugia RN (2014) Offshore floating wind turbine-driven deep sea water pumping for combined electrical power and district cooling. J Phys: Conf Ser—Sci Mak Torque Wind 524 (Copenhagen) Sant T, Buhagiar D, Farrugia RN (2014) Offshore floating wind turbine-driven deep sea water pumping for combined electrical power and district cooling. J Phys: Conf Ser—Sci Mak Torque Wind 524 (Copenhagen)
10.
go back to reference Farrugia RN, Sant T (2013) Mediterranean inshore wind resources: combining MCPs and CFD for marine resource quantification. Wind Eng 37(3):243–256CrossRef Farrugia RN, Sant T (2013) Mediterranean inshore wind resources: combining MCPs and CFD for marine resource quantification. Wind Eng 37(3):243–256CrossRef
13.
go back to reference Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. U.S. Department of Energy, National Renewable Energy Laboratory, Golden, CO, Technical Report Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. U.S. Department of Energy, National Renewable Energy Laboratory, Golden, CO, Technical Report
Metadata
Title
Coupling Floating Wind Turbines with Large- Scale Air-Conditioning Systems Through Deep Sea Water Pumping: Case Studies of System Performance in European Deep Waters
Authors
Tonio Sant
Robert N. Farrugia
David Arroyo López-Carro
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-17777-9_83