Skip to main content
Top

2019 | OriginalPaper | Chapter

51. Coupling of Discrete and Continuum Approaches in Modeling the Behavior of Materials

Authors : Alexey Yu. Smolin, Igor Yu. Smolin, Evgeny V. Shilko, Yuri P. Stefanov, Sergey G. Psakhie

Published in: Handbook of Mechanics of Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For computer simulation of the mechanical behavior of materials and various media, methods of continuum mechanics are mainly used. Continuum approach uses highly developed mathematical apparatus of continuous functions, and capabilities of this approach are extremely wide and well known. However, for a number of very important processes, such as severe plastic deformation, mass mixing, damage initiation and development, material fragmentation, and so on, continuum methods of solid mechanics face certain hard difficulties. As a result, a great interest for the approach based on a discrete description of materials and media has been growing up in recent years.
It is obvious that both continuum and discrete approaches have their own advantages and disadvantages. A great number of commercial software has been created for solving numerous scientific and engineering problems based on continuum mechanics. Hence, the main line of discrete approach development seems to be not a substitute but a supplement to continuum methods in solving complex specific problems based on a coupling of the continuum and discrete approaches.
This chapter shows how to solve this problem on the example of the finite-difference method for numerical solution of dynamic problems on elastic-plastic deformation of continua, which is based on the continuum approach, and the movable cellular automaton method based on the discrete approach. Two particular applications of the coupled method are considered. The first example concerns simulation of target penetration by long rod at the macroscale. The second one deals with simulation of sliding friction at the scale of contact patch (mesoscale).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Darrigol O. Between hydrodynamics and elasticity theory: the first five births of the Navier-stokes equation. Arch Hist Exact Sci. 2002;56:95–150.MathSciNetMATHCrossRef Darrigol O. Between hydrodynamics and elasticity theory: the first five births of the Navier-stokes equation. Arch Hist Exact Sci. 2002;56:95–150.MathSciNetMATHCrossRef
2.
go back to reference Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique. 1979;29(1):47–65.CrossRef Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique. 1979;29(1):47–65.CrossRef
3.
go back to reference Herrmann HJ. Simulating granular media on the computer. In: Garrido PL, Marro J, editors. 3rd Granada lectures in computational physics. Heidelberg: Springer; 1995. Herrmann HJ. Simulating granular media on the computer. In: Garrido PL, Marro J, editors. 3rd Granada lectures in computational physics. Heidelberg: Springer; 1995.
4.
go back to reference Luding S. Granular materials under vibration: simulation of rotating spheres. Phys Rev E. 1995;52(4):4442–57.CrossRef Luding S. Granular materials under vibration: simulation of rotating spheres. Phys Rev E. 1995;52(4):4442–57.CrossRef
5.
go back to reference Poschel T. Granular material flowing down an inclined chute: a molecular dynamics simulation. J Phys II. 1993;3(1):27–40.MathSciNet Poschel T. Granular material flowing down an inclined chute: a molecular dynamics simulation. J Phys II. 1993;3(1):27–40.MathSciNet
7.
go back to reference Psakhie SG, Horie Y, Korostelev SY, Smolin AY, Dmitriev AI, Shilko EV, Alekseev SV. Method of movable cellular automata as a tool for simulation within the framework of physical mesomechanics. Russ Phys J. 1995;38(11):1157–68.CrossRef Psakhie SG, Horie Y, Korostelev SY, Smolin AY, Dmitriev AI, Shilko EV, Alekseev SV. Method of movable cellular automata as a tool for simulation within the framework of physical mesomechanics. Russ Phys J. 1995;38(11):1157–68.CrossRef
8.
go back to reference Psakhie SG, Ostermeyer GP, Dmitriev AI, Shilko EV, Smolin AY, Korostelev SY. Movable cellular automata method as a new trend in computational mechanics. I. Theoretical description. Phys Mesomech. 2000;3(2):5–12. Psakhie SG, Ostermeyer GP, Dmitriev AI, Shilko EV, Smolin AY, Korostelev SY. Movable cellular automata method as a new trend in computational mechanics. I. Theoretical description. Phys Mesomech. 2000;3(2):5–12.
9.
go back to reference Psakhie SG, Chertov MA, Shilko EV. Interpretation of the parameters of the method of movable cellular automata on the basis of continuum description. Phys Mesomech. 2000;3(3):89–92. Psakhie SG, Chertov MA, Shilko EV. Interpretation of the parameters of the method of movable cellular automata on the basis of continuum description. Phys Mesomech. 2000;3(3):89–92.
10.
go back to reference Psakhie SG, Horie Y, Ostermeyer GP, Korostelev SY, Smolin AY, Shilko EV, Dmitriev AI, Blatnik S, Spegel M, Zavsek S. Movable cellular automata method for simulating materials with mesostructure. Theor Appl Fract Mech. 2001;37(1–3):311–34.CrossRef Psakhie SG, Horie Y, Ostermeyer GP, Korostelev SY, Smolin AY, Shilko EV, Dmitriev AI, Blatnik S, Spegel M, Zavsek S. Movable cellular automata method for simulating materials with mesostructure. Theor Appl Fract Mech. 2001;37(1–3):311–34.CrossRef
11.
go back to reference Psakhie SG, Ruzhich VV, Smekalin OP, Shilko EV. Response of the geological media to dynamic loading. Phys Mesomech. 2001;4(1):63–6. Psakhie SG, Ruzhich VV, Smekalin OP, Shilko EV. Response of the geological media to dynamic loading. Phys Mesomech. 2001;4(1):63–6.
12.
go back to reference Goldin SV, Psakhie SG, Dmitriev AI, Yushin VI. Structure rearrangement and “lifting” force phenomenon in granular soil under dynamic loading. Phys Mesomech. 2001;4(3):91–7. Goldin SV, Psakhie SG, Dmitriev AI, Yushin VI. Structure rearrangement and “lifting” force phenomenon in granular soil under dynamic loading. Phys Mesomech. 2001;4(3):91–7.
13.
go back to reference Smolin AY, Shilko EV, Astafurov SV, Konovalenko IS, Buyakova SP, Psakhie SG. Modeling mechanical behaviors of composites with various ratios of matrix–inclusion properties using movable cellular automaton method. Def Technol. 2015;11(1):18–34.CrossRef Smolin AY, Shilko EV, Astafurov SV, Konovalenko IS, Buyakova SP, Psakhie SG. Modeling mechanical behaviors of composites with various ratios of matrix–inclusion properties using movable cellular automaton method. Def Technol. 2015;11(1):18–34.CrossRef
14.
go back to reference Psakhie SG, Smolin AY, YuP S, Makarov PV, Shilko EV, Chertov MA, Evtushenko EP. Simulation of behavior of complex media on the basis of a discrete-continuous approach. Phys Mesomech. 2003;6(5–6):47–56. Psakhie SG, Smolin AY, YuP S, Makarov PV, Shilko EV, Chertov MA, Evtushenko EP. Simulation of behavior of complex media on the basis of a discrete-continuous approach. Phys Mesomech. 2003;6(5–6):47–56.
15.
go back to reference Psakhie SG, Smolin AY, Stefanov YP, Makarov PV, Chertov MA. Modeling the behavior of complex media by jointly using discrete and continuum approaches. Tech Phys Lett. 2004;30(9):712–4.CrossRef Psakhie SG, Smolin AY, Stefanov YP, Makarov PV, Chertov MA. Modeling the behavior of complex media by jointly using discrete and continuum approaches. Tech Phys Lett. 2004;30(9):712–4.CrossRef
16.
go back to reference Wilkins ML. Calculation of elastic-plastic flow. In: Alder B, Fernbach S, Rotenberg M, editors. Methods of computational physics, Fundamental methods in hydrodynamics, vol. 3. New York: Academic Press; 1964. Wilkins ML. Calculation of elastic-plastic flow. In: Alder B, Fernbach S, Rotenberg M, editors. Methods of computational physics, Fundamental methods in hydrodynamics, vol. 3. New York: Academic Press; 1964.
18.
go back to reference Daw MS, Foiles SM, Baskes MI. The embedded-atom method: a review of theory and applications. Materials Science Reports. 1993;9:251–310.CrossRef Daw MS, Foiles SM, Baskes MI. The embedded-atom method: a review of theory and applications. Materials Science Reports. 1993;9:251–310.CrossRef
19.
go back to reference Psakhie SG, Shilko EV, Smolin AY, Dimaki AV, Dmitriev AI, Konovalenko IS, Astafurov SV, Zavshek S. Approach to simulation of deformation and fracture of hierarchically organized heterogeneous media, including contrast media. Phys Mesomech. 2011;14(5–6):224–48.CrossRef Psakhie SG, Shilko EV, Smolin AY, Dimaki AV, Dmitriev AI, Konovalenko IS, Astafurov SV, Zavshek S. Approach to simulation of deformation and fracture of hierarchically organized heterogeneous media, including contrast media. Phys Mesomech. 2011;14(5–6):224–48.CrossRef
20.
go back to reference Psakhie SG, Shilko EV, Grigoriev AS, Astafurov SV, Dimaki AV, Smolin AY. A mathematical model of particle-particle interaction for discrete element based modeling of deformation and fracture of heterogeneous elastic-plastic materials. Eng Fract Mech. 2014;130:96–115.CrossRef Psakhie SG, Shilko EV, Grigoriev AS, Astafurov SV, Dimaki AV, Smolin AY. A mathematical model of particle-particle interaction for discrete element based modeling of deformation and fracture of heterogeneous elastic-plastic materials. Eng Fract Mech. 2014;130:96–115.CrossRef
21.
go back to reference Shilko EV, Psakhie SG, Schmauder S, Popov VL, Astafurov SV, Smolin AY. Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure. Comput Mater Sci. 2015;102:267–85.CrossRef Shilko EV, Psakhie SG, Schmauder S, Popov VL, Astafurov SV, Smolin AY. Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure. Comput Mater Sci. 2015;102:267–85.CrossRef
22.
go back to reference Potyondy DO, Cundall PA. A bonded-particle model for rock. Int J Rock Mech Min Sci. 2004;41(8):1329–64.CrossRef Potyondy DO, Cundall PA. A bonded-particle model for rock. Int J Rock Mech Min Sci. 2004;41(8):1329–64.CrossRef
23.
go back to reference Smolin AY, Roman NV, Dobrynin SA, Psakhie SG. On rotation in the movable cellular automaton method. Phys Mesomech. 2009;12(3–4):124–9.CrossRef Smolin AY, Roman NV, Dobrynin SA, Psakhie SG. On rotation in the movable cellular automaton method. Phys Mesomech. 2009;12(3–4):124–9.CrossRef
24.
go back to reference Noh VF. CEL: a time-dependent two-space-dimensional coupled Eulerian-Lagrangian code. In: Alder B, Fernbach S, Rotenberg M, editors. Methods of computational physics, Fundamental methods in hydrodynamics, vol. 3. New York: Academic Press; 1964. Noh VF. CEL: a time-dependent two-space-dimensional coupled Eulerian-Lagrangian code. In: Alder B, Fernbach S, Rotenberg M, editors. Methods of computational physics, Fundamental methods in hydrodynamics, vol. 3. New York: Academic Press; 1964.
25.
go back to reference Johnson GR. Dynamic response of axisymmetric solids subjected to impact and spin. AIAA J. 1979;17(9):975–9.CrossRef Johnson GR. Dynamic response of axisymmetric solids subjected to impact and spin. AIAA J. 1979;17(9):975–9.CrossRef
26.
go back to reference Gulidov AI, Fomin VM, Shabalin II. Mathematical simulation of fracture in impact problems with formation of fragments. International Journal of Fracture. 1999;100(2):183–96.CrossRef Gulidov AI, Fomin VM, Shabalin II. Mathematical simulation of fracture in impact problems with formation of fragments. International Journal of Fracture. 1999;100(2):183–96.CrossRef
27.
go back to reference Stefanov YP. Wave dynamics of cracks and multiple contact surface interaction. Theor Appl Fract Mech. 2000;34(2):101–8.CrossRef Stefanov YP. Wave dynamics of cracks and multiple contact surface interaction. Theor Appl Fract Mech. 2000;34(2):101–8.CrossRef
28.
go back to reference Stefanov YP, Bakeev RA, Rebetsky YL, Kontorovich VA. Structure and formation stages of a fault zone in a geomedium layer in strike-slip displacement of the basement. Phys Mesomech. 2014;17(3):204–15.CrossRef Stefanov YP, Bakeev RA, Rebetsky YL, Kontorovich VA. Structure and formation stages of a fault zone in a geomedium layer in strike-slip displacement of the basement. Phys Mesomech. 2014;17(3):204–15.CrossRef
29.
go back to reference Stefanov Y, Bakeev RA. Deformation and fracture structures in strike-slip faulting. Eng Fract Mech. 2014;129:102–11.CrossRef Stefanov Y, Bakeev RA. Deformation and fracture structures in strike-slip faulting. Eng Fract Mech. 2014;129:102–11.CrossRef
30.
go back to reference Johnson GR Stryk RA, Holmquist TR, Souka OA. Recent EPIC code developments for high velocity impact: 3D element arrangements and 2D fragment distributions. International Journal of Impact Engineering. 1990;10:281–94.CrossRef Johnson GR Stryk RA, Holmquist TR, Souka OA. Recent EPIC code developments for high velocity impact: 3D element arrangements and 2D fragment distributions. International Journal of Impact Engineering. 1990;10:281–94.CrossRef
31.
go back to reference Beissel SR, Johnson GR. Large-deformation triangular and tetrahedral element formulations for unstructured meshes. Comput Methods Appl Mech Eng. 2000;187:469–82.MATHCrossRef Beissel SR, Johnson GR. Large-deformation triangular and tetrahedral element formulations for unstructured meshes. Comput Methods Appl Mech Eng. 2000;187:469–82.MATHCrossRef
32.
go back to reference Johnson GR, Stryk RA, Beissel SR. SPH for high velocity impact computations. Comput Methods Appl Mech Eng. 1996;139:347–73.MATHCrossRef Johnson GR, Stryk RA, Beissel SR. SPH for high velocity impact computations. Comput Methods Appl Mech Eng. 1996;139:347–73.MATHCrossRef
33.
go back to reference Johnson GR, Beissel SR, Stryk RA. An improved generalized particle algorithm that includes boundaries and interfaces. Int J Numer Methods Eng. 2002;53:875–904.CrossRef Johnson GR, Beissel SR, Stryk RA. An improved generalized particle algorithm that includes boundaries and interfaces. Int J Numer Methods Eng. 2002;53:875–904.CrossRef
34.
go back to reference Chertov MA, Smolin AY, Shilko EV, Psakhie SG. Simulation of complex plane targets penetration by long rod using MCA method. In: Sih GC, Kermanidis TB, Pantelakis SG, editors. Multiscaling in applied science and emerging technology, fundamentals and applications in mesomechanics: proceedings of the sixth international conference for mesomechanics. Patras; 2004. Chertov MA, Smolin AY, Shilko EV, Psakhie SG. Simulation of complex plane targets penetration by long rod using MCA method. In: Sih GC, Kermanidis TB, Pantelakis SG, editors. Multiscaling in applied science and emerging technology, fundamentals and applications in mesomechanics: proceedings of the sixth international conference for mesomechanics. Patras; 2004.
35.
go back to reference Gust WH. High impact deformation of metal cylinders at elevated temperatures. J Appl Phys. 1982;53(5):3566–75.CrossRef Gust WH. High impact deformation of metal cylinders at elevated temperatures. J Appl Phys. 1982;53(5):3566–75.CrossRef
36.
go back to reference Fomin VM, Gulidov AI, Sapozhnikov GA, et al. High-velocity interaction of solids. Novosibirsk: Izdatelstvo SO RAN; 1999. (in Russian) Fomin VM, Gulidov AI, Sapozhnikov GA, et al. High-velocity interaction of solids. Novosibirsk: Izdatelstvo SO RAN; 1999. (in Russian)
37.
go back to reference Smolin AY, Konovalenko IS, Psakhie SG. Identification of elastic waves generated in the contact zone of a friction couple. Tech Phys Lett. 2007;33(7):600–3.CrossRef Smolin AY, Konovalenko IS, Psakhie SG. Identification of elastic waves generated in the contact zone of a friction couple. Tech Phys Lett. 2007;33(7):600–3.CrossRef
38.
go back to reference Psakhie SG, Popov VL, Shilko EV, Smolin AY, Dmitriev AI. Spectral analysis of the behavior and properties of solid surface layers. Nanotribospectroscopy. Phys Mesomech. 2009;12(5–6): 221–34.CrossRef Psakhie SG, Popov VL, Shilko EV, Smolin AY, Dmitriev AI. Spectral analysis of the behavior and properties of solid surface layers. Nanotribospectroscopy. Phys Mesomech. 2009;12(5–6): 221–34.CrossRef
39.
go back to reference Dmitriev AI, Smolin AY, Popov VL, Psakhie SG. A multilevel computer simulation of friction and wear by numerical methods of discrete mechanics and a phenomenological theory. Phys Mesomech. 2009;12(1–2):11–9.CrossRef Dmitriev AI, Smolin AY, Popov VL, Psakhie SG. A multilevel computer simulation of friction and wear by numerical methods of discrete mechanics and a phenomenological theory. Phys Mesomech. 2009;12(1–2):11–9.CrossRef
40.
41.
go back to reference Venkatachalam R. Mechanical vibrations. Delhi: PHI Learning Private Limited; 2014. Venkatachalam R. Mechanical vibrations. Delhi: PHI Learning Private Limited; 2014.
42.
go back to reference Dmitriev AI, Popov VL, Psakhie SG. Simulation of surface topography with the method of movable cellular automata. Tribol Int. 2006;39(5):444–9.CrossRef Dmitriev AI, Popov VL, Psakhie SG. Simulation of surface topography with the method of movable cellular automata. Tribol Int. 2006;39(5):444–9.CrossRef
43.
go back to reference Mallat S. A wavelet tour of signal processing. San Diego: Academic Press; 1999.MATH Mallat S. A wavelet tour of signal processing. San Diego: Academic Press; 1999.MATH
45.
go back to reference Oñate E, Rojek J. Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Methods Appl Mech Eng. 2004;193(27–29): 3087–128.MATHCrossRef Oñate E, Rojek J. Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Methods Appl Mech Eng. 2004;193(27–29): 3087–128.MATHCrossRef
46.
go back to reference Johnson GR. Numerical algorithms and material models for high-velocity impact computations. International Journal of Impact Engineering. 2011;38(6):456–72.CrossRef Johnson GR. Numerical algorithms and material models for high-velocity impact computations. International Journal of Impact Engineering. 2011;38(6):456–72.CrossRef
Metadata
Title
Coupling of Discrete and Continuum Approaches in Modeling the Behavior of Materials
Authors
Alexey Yu. Smolin
Igor Yu. Smolin
Evgeny V. Shilko
Yuri P. Stefanov
Sergey G. Psakhie
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_35

Premium Partners