Skip to main content
Top
Published in: Wireless Personal Communications 2/2021

11-05-2021

COVID-19 Classification Based on Deep Convolution Neural Network Over a Wireless Network

Authors: Wafaa A. Shalaby, Waleed Saad, Mona Shokair, Fathi E. Abd El-Samie, Moawad I. Dessouky

Published in: Wireless Personal Communications | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Corona Virus Disease 19 (COVID-19) firstly spread in China since December 2019. Then, it spread at a high rate around the world. Therefore, rapid diagnosis of COVID-19 has become a very hot research topic. One of the possible diagnostic tools is to use a deep convolution neural network (DCNN) to classify patient images. Chest X-ray is one of the most widely-used imaging techniques for classifying COVID-19 cases. This paper presents a proposed wireless communication and classification system for X-ray images to detect COVID-19 cases. Different modulation techniques are compared to select the most reliable one with less required bandwidth. The proposed DCNN architecture consists of deep feature extraction and classification layers. Firstly, the proposed DCNN hyper-parameters are adjusted in the training phase. Then, the tuned hyper-parameters are utilized in the testing phase. These hyper-parameters are the optimization algorithm, the learning rate, the mini-batch size and the number of epochs. From simulation results, the proposed scheme outperforms other related pre-trained networks. The performance metrics are accuracy, loss, confusion matrix, sensitivity, precision, \(F_{1}\) score, specificity, Receiver Operating Characteristic (ROC) curve, and Area Under the Curve (AUC). The proposed scheme achieves a high accuracy of 97.8 %, a specificity of 98.5 %, and an AUC of 98.9 %.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Singhal, T. (2020). A review of coronavirus disease-2019 (covid-19). The Indian Journal of Pediatrics, 87(4), 1–6.CrossRef Singhal, T. (2020). A review of coronavirus disease-2019 (covid-19). The Indian Journal of Pediatrics, 87(4), 1–6.CrossRef
4.
go back to reference Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in wuhan, china. The Lancet, 395(10223), 497–506.CrossRef Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in wuhan, china. The Lancet, 395(10223), 497–506.CrossRef
6.
go back to reference Kroft, L. J., van der Velden, L., Girón, I. H., Roelofs, J. J., de Roos, A., & Geleijns, J. (2019). Added value of ultra-low-dose computed tomography, dose equivalent to chest X-ray radiography, for diagnosing chest pathology. Journal of Thoracic Imaging, 34(3), 179.CrossRef Kroft, L. J., van der Velden, L., Girón, I. H., Roelofs, J. J., de Roos, A., & Geleijns, J. (2019). Added value of ultra-low-dose computed tomography, dose equivalent to chest X-ray radiography, for diagnosing chest pathology. Journal of Thoracic Imaging, 34(3), 179.CrossRef
8.
go back to reference Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1.CrossRef Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1.CrossRef
9.
go back to reference Chen, X.-W., & Lin, X. (2014). Big data deep learning: Challenges and perspectives. IEEE Access, 2, 514–525.CrossRef Chen, X.-W., & Lin, X. (2014). Big data deep learning: Challenges and perspectives. IEEE Access, 2, 514–525.CrossRef
10.
go back to reference Singh, K., Gupta, G., Vig, L., Shroff, G., & Agarwal, P. (2017). Deep convolutional neural networks for pairwise causality. arXiv preprint arXiv:1701.00597. Singh, K., Gupta, G., Vig, L., Shroff, G., & Agarwal, P. (2017). Deep convolutional neural networks for pairwise causality. arXiv preprint arXiv:​1701.​00597.
11.
go back to reference He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.
12.
go back to reference Liu, S., & Deng, W. (2015). Very deep convolutional neural network based image classification using small training sample size. In 2015 3rd IAPR Asian conference on pattern recognition (ACPR), pp. 730–734, IEEE. Liu, S., & Deng, W. (2015). Very deep convolutional neural network based image classification using small training sample size. In 2015 3rd IAPR Asian conference on pattern recognition (ACPR), pp. 730–734, IEEE.
13.
go back to reference Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9.
14.
go back to reference Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258. Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258.
15.
go back to reference Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A.A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence. Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A.A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence.
16.
go back to reference Wang, C., Zhao, Z., Ren, Q., Xu, Y., & Yu, Y. (2019). Dense u-net based on patch-based learning for retinal vessel segmentation. Entropy, 21(2), 168.MathSciNetCrossRef Wang, C., Zhao, Z., Ren, Q., Xu, Y., & Yu, Y. (2019). Dense u-net based on patch-based learning for retinal vessel segmentation. Entropy, 21(2), 168.MathSciNetCrossRef
17.
go back to reference Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097–1105. Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097–1105.
18.
go back to reference George, D., Shen, H., & Huerta, E. (2017). Deep transfer learning: A new deep learning glitch classification method for advanced ligo. arXiv preprint arXiv:1706.07446. George, D., Shen, H., & Huerta, E. (2017). Deep transfer learning: A new deep learning glitch classification method for advanced ligo. arXiv preprint arXiv:​1706.​07446.
19.
go back to reference Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., et al. (2019). A state-of-the-art survey on deep learning theory and architectures. Electronics, 8(3), 292.CrossRef Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., et al. (2019). A state-of-the-art survey on deep learning theory and architectures. Electronics, 8(3), 292.CrossRef
20.
go back to reference Long, M., Zhu, H., Wang, J., & Jordan, M.I. (2017). Deep transfer learning with joint adaptation networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2208–2217, JMLR. org. Long, M., Zhu, H., Wang, J., & Jordan, M.I. (2017). Deep transfer learning with joint adaptation networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2208–2217, JMLR. org.
21.
go back to reference Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556.
22.
go back to reference Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826.
23.
go back to reference Akiba, T., Suzuki, S., & Fukuda, K. (2017). Extremely large minibatch sgd: Training resnet-50 on imagenet in 15 minutes. arXiv preprint arXiv:1711.04325. Akiba, T., Suzuki, S., & Fukuda, K. (2017). Extremely large minibatch sgd: Training resnet-50 on imagenet in 15 minutes. arXiv preprint arXiv:​1711.​04325.
24.
go back to reference Harada, H., & Prasad, R. (2002). Simulation and software radio for mobile communications. Artech House. Harada, H., & Prasad, R. (2002). Simulation and software radio for mobile communications. Artech House.
25.
go back to reference Proakis, J., Salehi, M. (2008). Digital communications. Boston: McGraw Hill. Proakis, J., Salehi, M. (2008). Digital communications. Boston: McGraw Hill.
27.
go back to reference Rahimzadeh, M., & Attar, A. (2020). A modified deep convolutional neural network for detecting covid-19 and pneumonia from chest x-ray images based on the concatenation of xception and resnet50v2. Informatics in Medicine Unlocked, 19, 100360.CrossRef Rahimzadeh, M., & Attar, A. (2020). A modified deep convolutional neural network for detecting covid-19 and pneumonia from chest x-ray images based on the concatenation of xception and resnet50v2. Informatics in Medicine Unlocked, 19, 100360.CrossRef
28.
go back to reference Swapnarekha, H., Behera, H. S., Nayak, J., & Naik, B. (2020). Role of intelligent computing in covid-19 prognosis: A state-of-the-art review. Chaos Solitons Fractals, 138, 109947.CrossRef Swapnarekha, H., Behera, H. S., Nayak, J., & Naik, B. (2020). Role of intelligent computing in covid-19 prognosis: A state-of-the-art review. Chaos Solitons Fractals, 138, 109947.CrossRef
29.
go back to reference Zhang, J., Xie, Y., Li, Y., Shen, C., & Xia, Y. (2020) Covid-19 screening on chest x-ray images using deep learning based anomaly detection. arXiv preprint arXiv:2003.12338. Zhang, J., Xie, Y., Li, Y., Shen, C., & Xia, Y. (2020) Covid-19 screening on chest x-ray images using deep learning based anomaly detection. arXiv preprint arXiv:​2003.​12338.
30.
go back to reference Gozes, O., Frid-Adar, M., Greenspan, H., Browning, P.D., Zhang, H., Ji, W., Bernheim, A., & Siegel, E. (2020). Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection and patient monitoring using deep learning ct image analysis. arXiv preprint arXiv:2003.05037. Gozes, O., Frid-Adar, M., Greenspan, H., Browning, P.D., Zhang, H., Ji, W., Bernheim, A., & Siegel, E. (2020). Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection and patient monitoring using deep learning ct image analysis. arXiv preprint arXiv:​2003.​05037.
31.
go back to reference Zheng, C., Deng, X., Fu, X., Zhou, Q., Feng, J., Ma, H., Liu, W., & Wang, X. (2020). Deep learning-based detection for covid-19 from chest ct using weak label. MedRxiv. Zheng, C., Deng, X., Fu, X., Zhou, Q., Feng, J., Ma, H., Liu, W., & Wang, X. (2020). Deep learning-based detection for covid-19 from chest ct using weak label. MedRxiv.
32.
go back to reference Shi, F., Xia, L., Shan, F., Wu, D., Wei, Y., Yuan, H., Jiang, H., Gao, Y., Sui, H., & Shen, D. (2020). Large-scale screening of covid-19 from community acquired pneumonia using infection size-aware classification. arXiv preprint arXiv:2003.09860. Shi, F., Xia, L., Shan, F., Wu, D., Wei, Y., Yuan, H., Jiang, H., Gao, Y., Sui, H., & Shen, D. (2020). Large-scale screening of covid-19 from community acquired pneumonia using infection size-aware classification. arXiv preprint arXiv:​2003.​09860.
Metadata
Title
COVID-19 Classification Based on Deep Convolution Neural Network Over a Wireless Network
Authors
Wafaa A. Shalaby
Waleed Saad
Mona Shokair
Fathi E. Abd El-Samie
Moawad I. Dessouky
Publication date
11-05-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08523-y

Other articles of this Issue 2/2021

Wireless Personal Communications 2/2021 Go to the issue