Skip to main content
Top

2019 | OriginalPaper | Chapter

Creating a NASA Deep Space Optical Communications System

Authors : Leslie J. Deutsch, Stephen M. Lichten, Daniel J. Hoppe, Anthony J. Russo, Donald M. Cornwell

Published in: Space Operations: Inspiring Humankind's Future

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We expect data rates from deep space missions to increase by approximately one order of magnitude per decade for the next 50 years. The first order of magnitude improvement will come from existing plans for radio frequency (RF) communications including enhancements to both spacecraft and Deep Space Network (DSN) facilities. The next two orders of magnitude are predicted to come from the introduction of deep space optical communications. Studies indicate that optical receive apertures of between 8 and 12 m are desired. The large cost of dedicated receive telescopes makes this method unrealistic—at least in the near-term. The cost of large optical ground terminals is driven primarily by the cost of the optics and by the cost of a stable structure for the telescope. We propose a novel hybrid design in which existing DSN 34 m beam waveguide (BWG) radio antennas can be modified to include an 8 m equivalent optical primary. By utilizing a low-cost segmented spherical mirror optical design, pioneered by the optical astronomical community, and by exploiting the already existing extremely stable large radio aperture structures in the DSN, we can minimize both of these cost drivers for implementing large optical communications ground terminals. Two collocated hybrid RF/optical antennas could be arrayed to synthesize the performance of an 11.3 m receive aperture to support more capable or more distant space missions or used separately to communicate with two optical spacecraft simultaneously. NASA is currently building six new 34 m BWG antennas in the DSN. The final two are planned to be built at the DSN Goldstone, California, and Canberra complexes. We are now investigating building these last two antennas as RF/optical hybrids. By delaying their operational dates by two years, we would be able to add the 8 m optical receive capability for these two antennas while fitting within existing budgetary constraints. This paper, which derives material from a paper the authors delivered at the SpaceOps 2018 conference [1], describes the hybrid antenna design, the technical challenges being addressed, and plan for using this concept, together with ongoing work on optical flight terminals, to infuse operation optical communications into deep space missions. All included figures are reproduced here with permission of the American Institute of Aeronautics and Astronautics (AIAA) the publishers of the transactions of SpaceOps.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Deutsch, L., Lichten, S., Hoppe, D., Russo, A., & Cornwell, D., (2018). Toward a NASA deep space optical communications system. In SpaceOps 2018. Deutsch, L., Lichten, S., Hoppe, D., Russo, A., & Cornwell, D., (2018). Toward a NASA deep space optical communications system. In SpaceOps 2018.
2.
go back to reference Deutsch, L., Townes, S., Liebrecht, P., Vrotsos, P., & Cornwell, D. (2016). Deep space network: The next 50 years. In SpaceOps 2016. Deutsch, L., Townes, S., Liebrecht, P., Vrotsos, P., & Cornwell, D. (2016). Deep space network: The next 50 years. In SpaceOps 2016.
3.
go back to reference Pugh, M., Kuperman, I., et al. (2017). The universal space transponder: A next generation software defined radio. In Transactions of the IEEE Aerospace Conference, 2017. Pugh, M., Kuperman, I., et al. (2017). The universal space transponder: A next generation software defined radio. In Transactions of the IEEE Aerospace Conference, 2017.
4.
go back to reference Davarian, F. (2013, September). The deep space network in the common platform era: A prototype implementation at DSS-13. In TTC-2013, Darmstadt, Germany. Davarian, F. (2013, September). The deep space network in the common platform era: A prototype implementation at DSS-13. In TTC-2013, Darmstadt, Germany.
5.
go back to reference Katz, J. (1982, May and June). 2.5 bit/detected photon demonstration program: Phase II and III experimental results. TDA Progress Report 42–70. Jet Propulsion Laboratory. Katz, J. (1982, May and June). 2.5 bit/detected photon demonstration program: Phase II and III experimental results. TDA Progress Report 42–70. Jet Propulsion Laboratory.
6.
go back to reference Wilson, K., & Lesh, J. (1993, August 15). An overview of the Galileo optical experiment (GOPEX). TDA Progress Report 42–114. Wilson, K., & Lesh, J. (1993, August 15). An overview of the Galileo optical experiment (GOPEX). TDA Progress Report 42–114.
7.
go back to reference Wilson, K., Page, N., Wu, J., & Srinivasan, M. (2003). The JPL optical communications telescope laboratory (OCTL) test bed for the future optical deep space network. AAS 00–000. Wilson, K., Page, N., Wu, J., & Srinivasan, M. (2003). The JPL optical communications telescope laboratory (OCTL) test bed for the future optical deep space network. AAS 00–000.
8.
go back to reference Morris, M., Kovalik, J., Andrews, K., Abrahamson, M., & Biswas, A. (2015). Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink. Optics Express. Morris, M., Kovalik, J., Andrews, K., Abrahamson, M., & Biswas, A. (2015). Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink. Optics Express.
9.
go back to reference Boroson, D., Robinson, B., Murphy, D., Burianek, D., Khatri, F., Kovalik, J., et al. (2014). Overview and results of the luna laser communication demonstrator. In Proceedings of SPIE 8971, Free-Space Laser Communication and Atmospheric Propagation XXVI. Boroson, D., Robinson, B., Murphy, D., Burianek, D., Khatri, F., Kovalik, J., et al. (2014). Overview and results of the luna laser communication demonstrator. In Proceedings of SPIE 8971, Free-Space Laser Communication and Atmospheric Propagation XXVI.
10.
go back to reference Israel, D., Edwards, B., & Staren, J. (2017). Laser Communications relay demonstration (LCRD) update and the path towards opitcal relay operations. In Transactions of the IEEE Aerospace Conference, 2017. Israel, D., Edwards, B., & Staren, J. (2017). Laser Communications relay demonstration (LCRD) update and the path towards opitcal relay operations. In Transactions of the IEEE Aerospace Conference, 2017.
11.
go back to reference Biswas, A., Kovalik, J., Srinivasan, M., Shaw, M., Piazzolla, S., Wright, M., & Farr, W. (2016). Deep space optical communications. In Proceedings SPIE, 9739. Biswas, A., Kovalik, J., Srinivasan, M., Shaw, M., Piazzolla, S., Wright, M., & Farr, W. (2016). Deep space optical communications. In Proceedings SPIE, 9739.
12.
go back to reference Polanskey, C. (2017). Psyche mission: Scientific models and instrument selection. In Transactions of the AGU. Polanskey, C. (2017). Psyche mission: Scientific models and instrument selection. In Transactions of the AGU.
13.
go back to reference Vilnrotter, V. (2010, February 15). Hybrid RF/optical communications via 34-meter DSN antennas. IPN PR 42–180, (pp. 1–28). Vilnrotter, V. (2010, February 15). Hybrid RF/optical communications via 34-meter DSN antennas. IPN PR 42–180, (pp. 1–28).
14.
go back to reference Bathker, D., Veruttipong, W., & Otoshi, T. (1992, June). Beam-waveguide antenna performance predictions with comparisons to experimental results. IEEE Transactions on Microwave Theory and Techniques, 40(6). Bathker, D., Veruttipong, W., & Otoshi, T. (1992, June). Beam-waveguide antenna performance predictions with comparisons to experimental results. IEEE Transactions on Microwave Theory and Techniques, 40(6).
15.
go back to reference Hoppe, D., Charles, J., Piazzola, S., Amoozegar, F., Britcliffe, M., & Hemmati, H. (2015, May 15). Integrated RF/opitcal ground stations technology challenges. IPN Progress Report 42–181. Hoppe, D., Charles, J., Piazzola, S., Amoozegar, F., Britcliffe, M., & Hemmati, H. (2015, May 15). Integrated RF/opitcal ground stations technology challenges. IPN Progress Report 42–181.
16.
go back to reference Piazolla, S., Wu, J., Franco, M., & Hoppe, D. (2011). Preliminary assessment of the atmospheric optical channel at goldstone (CA). In 2011 International Conference on Space Optical Systems and Applications (ICSOS). Piazolla, S., Wu, J., Franco, M., & Hoppe, D. (2011). Preliminary assessment of the atmospheric optical channel at goldstone (CA). In 2011 International Conference on Space Optical Systems and Applications (ICSOS).
17.
go back to reference Hoppe, D., Chung, D., Kovalik, J., Gama, E., & Fernandez, M. (2016, November 15). RF/optical demonstration: Focal plane assembly. IPN Progress Report 42–207. Hoppe, D., Chung, D., Kovalik, J., Gama, E., & Fernandez, M. (2016, November 15). RF/optical demonstration: Focal plane assembly. IPN Progress Report 42–207.
18.
go back to reference Torrez, T. (2015, May 15). RF/optical hybrid antenna. IPN Progress Report 42–201. Torrez, T. (2015, May 15). RF/optical hybrid antenna. IPN Progress Report 42–201.
19.
go back to reference Statman, J., & Berner, J. (2016). Deep space network – paradigm changes for cost-efficiency. In Transactions of SpaceOps, 2016. Statman, J., & Berner, J. (2016). Deep space network – paradigm changes for cost-efficiency. In Transactions of SpaceOps, 2016.
20.
go back to reference LaBelle, R., & Buu, C. (2014). Uplink and downlink electronics upgrades for the NASA deep space network aperture enhancement (DAE) project. In Transactions of SpaceOps, 2014. LaBelle, R., & Buu, C. (2014). Uplink and downlink electronics upgrades for the NASA deep space network aperture enhancement (DAE) project. In Transactions of SpaceOps, 2014.
21.
go back to reference Biswas, A., Kovalik, J., Srinivasan, M., Shaw, M., Piazzolla, S., et al. (2016). Deep space laser communications. In Proceedings of SPIE, 2016. Biswas, A., Kovalik, J., Srinivasan, M., Shaw, M., Piazzolla, S., et al. (2016). Deep space laser communications. In Proceedings of SPIE, 2016.
Metadata
Title
Creating a NASA Deep Space Optical Communications System
Authors
Leslie J. Deutsch
Stephen M. Lichten
Daniel J. Hoppe
Anthony J. Russo
Donald M. Cornwell
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-11536-4_3

Premium Partner