Skip to main content
Top

2024 | OriginalPaper | Chapter

Creative Approaches to Long-Term Recycling of Aluminium Scrap Forming AlSiMgMnCu Alloy with Excellent Mechanical and Microstructural Properties

Authors : Safaa El-Nahas, Ahmed S. Aadli, Hassan M. Salman

Published in: Light Metals 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present research focuses on the recycling of various aluminium scraps that contain significant levels of silicon, iron, manganese, and copper to create a new aluminium alloy with superior properties. The alloy was designed to exhibit high extrudability and mechanical properties. The alloy was extruded at a low temperature of 430 °C, resulting in a good yield and form free of extrusion flaws. The produced alloy was characterized in three sets: Set 1 without aging (0 h), Set 2. with different aging times (3, 4, and 5 h) at 185 °C, and Set 3. with heat treatment and different aging times (3 h., 4 h., and 5 h.). The mechanical, electrical, and microstructural properties of each set were investigated. The samples in Set 1. had poor mechanical properties but high ductility due to the presence of Cu-enriched intermetallic as the dominant phase. Set 2 samples had the best mechanical properties while preserving high ductility, which was due to the synergy between α-Al (FeMn) Si, Cu-enriched intermetallic, spheroidal AlCuMgSi, and modified silicon particles. Set 3. samples underwent heat treatment at an elevated temperature (530 °C for 3 h) with rapid quenching, then aged for varying times and quenched rapidly, this led to the dissolution of the Cu-enriched intermetallic except for the AlMgCu phase with (Al96Mg3Cu1 and Al94Mg5Cu1, at. %), and the dominant phase was α-Al (FeMn) Si phase, which improved mechanical characteristics. Overall, the ASH01 alloy produced in Set 2 conditions is a promising alloy with strong mechanical characteristics and ductility as a recycled Al-scrap alloy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Haraldsson, J., Johansson, M.T. Effects on primary energy use, greenhouse gas emissions and related costs from improving energy end-use efficiency in the electrolysis in primary aluminium production. Energy Efficiency 13, 1299–1314 (2020). https://doi.org/10.1007/s12053-020-09893-1 Haraldsson, J., Johansson, M.T. Effects on primary energy use, greenhouse gas emissions and related costs from improving energy end-use efficiency in the electrolysis in primary aluminium production. Energy Efficiency 13, 1299–1314 (2020). https://​doi.​org/​10.​1007/​s12053-020-09893-1
3.
go back to reference Samuel, M. (2003). A new technique for recycling aluminium scrap. Journal of Materials processing technology, 135(1), 117–124. Samuel, M. (2003). A new technique for recycling aluminium scrap. Journal of Materials processing technology, 135(1), 117–124.
4.
go back to reference A. Wagiman, M.S. Mustapa, R. Asmawi, S. Shamsudin, M.A. Lajis, Y. Mutoh, A review on direct hot extrusion technique in recycling of aluminium chips, Int. J. Adv. Manuf. Tech. 106 (2020) 641. A. Wagiman, M.S. Mustapa, R. Asmawi, S. Shamsudin, M.A. Lajis, Y. Mutoh, A review on direct hot extrusion technique in recycling of aluminium chips, Int. J. Adv. Manuf. Tech. 106 (2020) 641.
5.
go back to reference G. Gaustad, E. Olivetti, R. Kirchain, Improving aluminum recycling: a survey of sorting and impurity removal technologies, Resour. Conserv. Recycl. 58 (2012) 79. G. Gaustad, E. Olivetti, R. Kirchain, Improving aluminum recycling: a survey of sorting and impurity removal technologies, Resour. Conserv. Recycl. 58 (2012) 79.
6.
go back to reference Luo, K., Wang, Z., Meng, L., & Guo, Z. (2022). Removal of iron for aluminum recovery from scrap aluminum alloy by supergravity separation with manganese addition. Chemical Engineering and Processing-Process Intensification, 173, 108841. Luo, K., Wang, Z., Meng, L., & Guo, Z. (2022). Removal of iron for aluminum recovery from scrap aluminum alloy by supergravity separation with manganese addition. Chemical Engineering and Processing-Process Intensification, 173, 108841.
7.
go back to reference Tabereaux, A. T., & Peterson, R. D. (2014). Aluminum production. In Treatise on Process Metallurgy (pp. 839–917). Elsevier. Tabereaux, A. T., & Peterson, R. D. (2014). Aluminum production. In Treatise on Process Metallurgy (pp. 839–917). Elsevier.
8.
go back to reference Haraldsson, J., & Johansson, M. T. (2018). Review of measures for improved energy efficiency in production-related processes in the aluminium industry–From electrolysis to recycling. Renewable and Sustainable Energy Reviews, 93, 525–548. Haraldsson, J., & Johansson, M. T. (2018). Review of measures for improved energy efficiency in production-related processes in the aluminium industry–From electrolysis to recycling. Renewable and Sustainable Energy Reviews, 93, 525–548.
10.
go back to reference Y. Komatsu, T. Arai, H. Abe, M. Sato, Y. Nakazawa, Application of Aluminum for Automobile Chassis Parts, SAE Technical Paper, 1991. Y. Komatsu, T. Arai, H. Abe, M. Sato, Y. Nakazawa, Application of Aluminum for Automobile Chassis Parts, SAE Technical Paper, 1991.
11.
go back to reference M. Skillingberg, J. Green, Aluminum applications in the rail industry, LIGHT METAL AGE-CHICAGO-. 65 (2007) 8. M. Skillingberg, J. Green, Aluminum applications in the rail industry, LIGHT METAL AGE-CHICAGO-. 65 (2007) 8.
13.
go back to reference Taha, G. M., Aadli, A. S., Ebnalwaled, A. A. (2020). Recovery of Aluminium Metal Using Ultrasonic Technique and Production of Al–Si Hypereutectic Alloys from 6063 Alloy’s Black Dross Using Silicon Lumps and Flux. In Light Metals 2020 (pp. 1128–1136). Springer, Cham. Taha, G. M., Aadli, A. S., Ebnalwaled, A. A. (2020). Recovery of Aluminium Metal Using Ultrasonic Technique and Production of Al–Si Hypereutectic Alloys from 6063 Alloy’s Black Dross Using Silicon Lumps and Flux. In Light Metals 2020 (pp. 1128–1136). Springer, Cham.
18.
go back to reference Wang, B., Zhang, Z., Xu, G., Zeng, X., Hu, W., & Matsubae, K. (2023). Wrought and cast aluminum flows in China in the context of electric vehicle diffusion and automotive lightweighting. Resources, Conservation and Recycling, 191, 106877. Wang, B., Zhang, Z., Xu, G., Zeng, X., Hu, W., & Matsubae, K. (2023). Wrought and cast aluminum flows in China in the context of electric vehicle diffusion and automotive lightweighting. Resources, Conservation and Recycling, 191, 106877.
19.
go back to reference Gesing, A. (2004). Assuring the continued recycling of light metals in end-of-life vehicles: A global perspective. JOM, 56(8), 18–27 Gesing, A. (2004). Assuring the continued recycling of light metals in end-of-life vehicles: A global perspective. JOM, 56(8), 18–27
20.
go back to reference Raabe, D. (2023). The Materials Science behind Sustainable Metals and Alloys. Chemical Reviews, 123(5), 2436–2608. Raabe, D. (2023). The Materials Science behind Sustainable Metals and Alloys. Chemical Reviews, 123(5), 2436–2608.
21.
go back to reference Pedneault, J., Majeau‐Bettez, G., & Margni, M. (2023). How much sorting is required for a circular low carbon aluminum economy? Journal of Industrial Ecology. Pedneault, J., Majeau‐Bettez, G., & Margni, M. (2023). How much sorting is required for a circular low carbon aluminum economy? Journal of Industrial Ecology.
22.
go back to reference Koyanaka, S., & Kobayashi, K. (2011). Incorporation of neural network analysis into a technique for automatically sorting lightweight metal scrap generated by ELV shredder facilities. Resources, conservation and recycling, 55(5), 515–523. Koyanaka, S., & Kobayashi, K. (2011). Incorporation of neural network analysis into a technique for automatically sorting lightweight metal scrap generated by ELV shredder facilities. Resources, conservation and recycling, 55(5), 515–523.
23.
go back to reference Capuzzi, S., & Timelli, G. (2018). Preparation and melting of scrap in aluminum recycling: A review. Metals, 8(4), 249. Capuzzi, S., & Timelli, G. (2018). Preparation and melting of scrap in aluminum recycling: A review. Metals, 8(4), 249.
24.
go back to reference Hatayama, H., Daigo, I., Matsuno, Y., & Adachi, Y. (2012). Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology. Resources, Conservation and Recycling, 66, 8–14. Hatayama, H., Daigo, I., Matsuno, Y., & Adachi, Y. (2012). Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology. Resources, Conservation and Recycling, 66, 8–14.
26.
go back to reference R. Parvizi, R.K.W. Marceau, A.E. Hughes, M.Y. Tan, M. Forsyth, Atom Probe Tomography Study of the Nanoscale Heterostructure around an Al20Mn3Cu2 Dispersoid in Aluminum Alloy 2024, Langmuir. 30 (2014) 14817–14823. https://doi.org/10.1021/la503418u. R. Parvizi, R.K.W. Marceau, A.E. Hughes, M.Y. Tan, M. Forsyth, Atom Probe Tomography Study of the Nanoscale Heterostructure around an Al20Mn3Cu2 Dispersoid in Aluminum Alloy 2024, Langmuir. 30 (2014) 14817–14823. https://​doi.​org/​10.​1021/​la503418u.
31.
go back to reference M.S. Salleh, M.Z. Omar, Influence of Cu content on microstructure and mechanical properties of thixoformed Al-Si-Cu-Mg alloys, Trans. Nonferrous Met. Soc. China, 25 (2015) 3523–3538. M.S. Salleh, M.Z. Omar, Influence of Cu content on microstructure and mechanical properties of thixoformed Al-Si-Cu-Mg alloys, Trans. Nonferrous Met. Soc. China, 25 (2015) 3523–3538.
35.
go back to reference E. Romhanji, M. Popovic, Problems and prospect of Al-Mg alloys application in marine constructions, Journal of Metallurgy. 12 (2006) 297–307. E. Romhanji, M. Popovic, Problems and prospect of Al-Mg alloys application in marine constructions, Journal of Metallurgy. 12 (2006) 297–307.
36.
go back to reference N. Li, M.L. Taheri, H. Wang, J. Wang, and M. Nastasi, Prog. Mater Sci. 96, 217 (2018). N. Li, M.L. Taheri, H. Wang, J. Wang, and M. Nastasi, Prog. Mater Sci. 96, 217 (2018).
37.
go back to reference A.S. Budiman, K.R. Narayanan, N. Li, J. Wang, N. Tamura, M. Kunz, and A. Misra, Mater. Sci. Eng., A 635, 6 (2015). A.S. Budiman, K.R. Narayanan, N. Li, J. Wang, N. Tamura, M. Kunz, and A. Misra, Mater. Sci. Eng., A 635, 6 (2015).
38.
go back to reference N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Scripta Mater. 63, 363 (2010). N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Scripta Mater. 63, 363 (2010).
39.
go back to reference Wang, S. J., Xie, D. Y., Wang, J., & Misra, A. (2021). Deformation behavior of nanoscale Al–Al2Cu eutectics studied by in situ micropillar compression. Materials Science and Engineering: A, 800, 140311. Wang, S. J., Xie, D. Y., Wang, J., & Misra, A. (2021). Deformation behavior of nanoscale Al–Al2Cu eutectics studied by in situ micropillar compression. Materials Science and Engineering: A, 800, 140311.
40.
go back to reference Okayasu, M., Sato, R., & Takasu, S. (2012). Effects of anisotropic microstructure of continuous cast Al–Cu eutectic alloys on their fatigue and tensile properties. International journal of fatigue, 42, 45–56. Okayasu, M., Sato, R., & Takasu, S. (2012). Effects of anisotropic microstructure of continuous cast Al–Cu eutectic alloys on their fatigue and tensile properties. International journal of fatigue, 42, 45–56.
41.
go back to reference Chanda, T., & Murty, G. S. (1992). Plastic behavior of CuAl 2. Journal of materials science, 27, 5931–5934. Chanda, T., & Murty, G. S. (1992). Plastic behavior of CuAl 2. Journal of materials science, 27, 5931–5934.
42.
go back to reference Bertarelli, H. R., & Biloni, H. (1972). Structure and heat treatment influence on the tensile properties of Al-Al 2 Cu eutectic composites. Metallurgical and Materials Transactions B, 3, 73–82. Bertarelli, H. R., & Biloni, H. (1972). Structure and heat treatment influence on the tensile properties of Al-Al 2 Cu eutectic composites. Metallurgical and Materials Transactions B, 3, 73–82.
43.
go back to reference Lawson, W. H. S., & Kerr, H. W. (1971). Mechanical behavior of rapidly solidified Al-Al 2 Cu and Al-Al 3 Ni composites. Metallurgical Transactions, 2, 2853–2859. Lawson, W. H. S., & Kerr, H. W. (1971). Mechanical behavior of rapidly solidified Al-Al 2 Cu and Al-Al 3 Ni composites. Metallurgical Transactions, 2, 2853–2859.
44.
go back to reference Jabczynski, F. S. J., & Cantor, B. (1981). The solidification and mechanical properties of chill-cast AI-AI 3 IMi and AI-AI 2 Cu eutectic alloys. Journal of Materials Science, 16, 2269–2280. Jabczynski, F. S. J., & Cantor, B. (1981). The solidification and mechanical properties of chill-cast AI-AI 3 IMi and AI-AI 2 Cu eutectic alloys. Journal of Materials Science, 16, 2269–2280.
45.
go back to reference Cantor, B., & Chadwick, G. A. (1975). The tensile deformation of unidirectionally solidified Al-Al 3 Ni and Al-Al 2 Cu eutectics. Journal of Materials Science, 10, 578–588. Cantor, B., & Chadwick, G. A. (1975). The tensile deformation of unidirectionally solidified Al-Al 3 Ni and Al-Al 2 Cu eutectics. Journal of Materials Science, 10, 578–588.
46.
go back to reference Park, J. M., Mattern, N., Kühn, U., Eckert, J., Kim, K. B., Kim, W. T., & Kim, D. H. (2009). High-strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity. Journal of Materials Research, 24(8), 2605–2609. Park, J. M., Mattern, N., Kühn, U., Eckert, J., Kim, K. B., Kim, W. T., & Kim, D. H. (2009). High-strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity. Journal of Materials Research, 24(8), 2605–2609.
47.
go back to reference Lei, Q., Ramakrishnan, B. P., Wang, S., Wang, Y., Mazumder, J., & Misra, A. (2017). Structural refinement and nanomechanical response of laser remelted Al-Al2Cu lamellar eutectic. Materials Science and Engineering: A, 706, 115–125. Lei, Q., Ramakrishnan, B. P., Wang, S., Wang, Y., Mazumder, J., & Misra, A. (2017). Structural refinement and nanomechanical response of laser remelted Al-Al2Cu lamellar eutectic. Materials Science and Engineering: A, 706, 115–125.
48.
go back to reference Mujumdar, S., Thakur, M. S. H., Islam, M., Mahboob, M., & Mo talab, M. (2021). Numerical investigation of mechanical properties of aluminum-copper alloys at nanoscale. Journal of Nanoparticle Research, 23(1), 1–20. Mujumdar, S., Thakur, M. S. H., Islam, M., Mahboob, M., & Mo talab, M. (2021). Numerical investigation of mechanical properties of aluminum-copper alloys at nanoscale. Journal of Nanoparticle Research, 23(1), 1–20.
49.
go back to reference Lombardi, A., Sediako, D., Ravindran, C., & Barati, M. (2019). Analysis of precipitation, dissolution and incipient melting of Al2Cu in B206 Al alloy using in-situ neutron diffraction. Journal of Alloys and Compounds, 784, 1017–1025. Lombardi, A., Sediako, D., Ravindran, C., & Barati, M. (2019). Analysis of precipitation, dissolution and incipient melting of Al2Cu in B206 Al alloy using in-situ neutron diffraction. Journal of Alloys and Compounds, 784, 1017–1025.
50.
go back to reference Zhang, Y., Li, R., Chen, P., Li, X., & Liu, Z. (2019). Microstructural evolution of Al2Cu phase and mechanical properties of the large-scale Al alloy components under different consecutive manufacturing processes. Journal of Alloys and Compounds, 808, 151634. Zhang, Y., Li, R., Chen, P., Li, X., & Liu, Z. (2019). Microstructural evolution of Al2Cu phase and mechanical properties of the large-scale Al alloy components under different consecutive manufacturing processes. Journal of Alloys and Compounds, 808, 151634.
51.
go back to reference Shilvock, W. D. (1995). The effect of alloy and impurity variation on the treatment, casting and physical properties of aluminium-silicon eutectic alloys. Shilvock, W. D. (1995). The effect of alloy and impurity variation on the treatment, casting and physical properties of aluminium-silicon eutectic alloys.
52.
go back to reference Farkoosh, A. R. (2015). Development of creep-resistant Al-Si cast alloys strengthened with nanoscale dispersoids. McGill University (Canada). Farkoosh, A. R. (2015). Development of creep-resistant Al-Si cast alloys strengthened with nanoscale dispersoids. McGill University (Canada).
53.
go back to reference Samolada, M. C., & Zabaniotou, A. A. (2014). Energetic valorization of SRF in dedicated plants and cement kilns and guidelines for application in Greece and Cyprus. Resources, Conservation and Recycling, 83, 34–43.‏ Samolada, M. C., & Zabaniotou, A. A. (2014). Energetic valorization of SRF in dedicated plants and cement kilns and guidelines for application in Greece and Cyprus. Resources, Conservation and Recycling, 83, 34–43.‏
Metadata
Title
Creative Approaches to Long-Term Recycling of Aluminium Scrap Forming AlSiMgMnCu Alloy with Excellent Mechanical and Microstructural Properties
Authors
Safaa El-Nahas
Ahmed S. Aadli
Hassan M. Salman
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50308-5_25

Premium Partners