Skip to main content
Top
Published in: Journal of Materials Science 5/2017

01-03-2017 | Original Paper

Creep behavior and microstructure of a 9Cr–3Co–3W martensitic steel

Authors: A. Fedoseeva, N. Dudova, R. Kaibyshev

Published in: Journal of Materials Science | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microstructure evolution under long-term aging and creep was studied in a 9wt%Cr–3wt%Co–3wt%W martensitic steel at a temperature of 650 °C and stress ranging from 100 to 220 MPa with a step of 20 MPa. This steel exhibited creep strength breakdown at an applied stress of 160 MPa and a rupture time of 1703 h. However, this creep strength breakdown did not coincide with the transition from short-term creep conditions to long-term creep, because deviation from the Monkman–Grant relationship occurs at a minimal strain rate of ~3 × 10−6 h−1, and the acceleration of the creep rate by strain, dln \( \dot{\varepsilon }_{r} \)/dε, in the acceleration region at applied stresses of 120 and 100 MPa significantly differs from the acceleration at greater applied stresses. The transition from short-term creep to long-term creep correlates with the strain-induced coarsening of the M23C6 carbides and the Laves phase particles, which leads to dissolution of the fine particles and the growth of coarse particles of these phases at the lath boundaries. With a decrease in the applied stress, the overall Zener drag force exerted by the boundary particles decreases below the critical value of 0.12 MPa, and the tempered martensitic lath structure transforms to a subgrain structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abe F, Kern TU, Viswanathan R (2008) Creep resistant steels. Woodhead Publishing in Materials, CambridgeCrossRef Abe F, Kern TU, Viswanathan R (2008) Creep resistant steels. Woodhead Publishing in Materials, CambridgeCrossRef
2.
go back to reference Kaybyshev RO, Skorobogatykh VN, Shchenkova IA (2010) New martensitic steels for fossil power plant: creep resistance. Phys Met Metallogr 109:186–200CrossRef Kaybyshev RO, Skorobogatykh VN, Shchenkova IA (2010) New martensitic steels for fossil power plant: creep resistance. Phys Met Metallogr 109:186–200CrossRef
3.
go back to reference Kitahara H, Ueji R, Tsuji N, Minamino Y (2006) Crystallographic features of lath martensite in low-carbon steel. Acta Mater 54:1279–1288CrossRef Kitahara H, Ueji R, Tsuji N, Minamino Y (2006) Crystallographic features of lath martensite in low-carbon steel. Acta Mater 54:1279–1288CrossRef
4.
go back to reference Ghassemi-Armaki H, Chen R, Maruyama K, Igarashi M (2010) Premature creep failure in strength enhanced high Cr ferritic steels caused by static recovery of tempered martensite lath structures. Mater Sci Eng A 527:6581–6588CrossRef Ghassemi-Armaki H, Chen R, Maruyama K, Igarashi M (2010) Premature creep failure in strength enhanced high Cr ferritic steels caused by static recovery of tempered martensite lath structures. Mater Sci Eng A 527:6581–6588CrossRef
5.
go back to reference Abe F (2009) Analysis of creep rates of tempered martensitic 9%Cr steel based on microstructure evolution. Mater Sci Eng A 510–511:64–69CrossRef Abe F (2009) Analysis of creep rates of tempered martensitic 9%Cr steel based on microstructure evolution. Mater Sci Eng A 510–511:64–69CrossRef
6.
go back to reference Kostka A, Tak K-G, Hellmig RJ, Estrin Y, Eggeler G (2007) On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels. Acta Mater 55:539–550CrossRef Kostka A, Tak K-G, Hellmig RJ, Estrin Y, Eggeler G (2007) On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels. Acta Mater 55:539–550CrossRef
7.
go back to reference Fedoseeva A, Dudova N, Kaibyshev R (2016) Creep strength break down and microstructure evolution in a 3%Co modified P92 steel. Mater Sci Eng A 654:1–12CrossRef Fedoseeva A, Dudova N, Kaibyshev R (2016) Creep strength break down and microstructure evolution in a 3%Co modified P92 steel. Mater Sci Eng A 654:1–12CrossRef
8.
go back to reference Taneike M, Sawada K, Abe F (2004) Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment. Metall Mater Trans A 35:1255–1261CrossRef Taneike M, Sawada K, Abe F (2004) Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment. Metall Mater Trans A 35:1255–1261CrossRef
9.
go back to reference Dudova N, Plotnikova A, Molodov D, Belyakov A, Kaibyshev R (2012) Structural changes of tempered martensitic 9%Cr–2%W–3%Co steel during creep at 650°C. Mater Sci Eng A 534:632–639CrossRef Dudova N, Plotnikova A, Molodov D, Belyakov A, Kaibyshev R (2012) Structural changes of tempered martensitic 9%Cr–2%W–3%Co steel during creep at 650°C. Mater Sci Eng A 534:632–639CrossRef
10.
go back to reference Dudko V, Belyakov A, Molodov D, Kaibyshev R (2013) Microstructure evolution and pinning of boundaries by precipitates in a 9pctCr heat resistant steel during creep. Metall Mater Trans A 44:162–172CrossRef Dudko V, Belyakov A, Molodov D, Kaibyshev R (2013) Microstructure evolution and pinning of boundaries by precipitates in a 9pctCr heat resistant steel during creep. Metall Mater Trans A 44:162–172CrossRef
11.
go back to reference Kipelova A, Kaibyshev R, Belyakov A, Molodov D (2011) Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions. Mater Sci Eng A 528:1280–1286CrossRef Kipelova A, Kaibyshev R, Belyakov A, Molodov D (2011) Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions. Mater Sci Eng A 528:1280–1286CrossRef
12.
go back to reference Aghajani A, Somsen Ch, Eggeler G (2009) On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel. Acta Mater 57:5093–5106CrossRef Aghajani A, Somsen Ch, Eggeler G (2009) On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel. Acta Mater 57:5093–5106CrossRef
13.
go back to reference Abe F (2015) Creep behavior, deformation mechanisms and creep life of mod. 9Cr-1Mo steel. Metall Mater Trans A 46:5610–5625CrossRef Abe F (2015) Creep behavior, deformation mechanisms and creep life of mod. 9Cr-1Mo steel. Metall Mater Trans A 46:5610–5625CrossRef
14.
go back to reference Ghassemi-Armaki H, Chen R, Maruyama K, Igarashi M (2011) Creep behavior and degradation of subgrain structures pinned by nanoscale precipitates in strength-enhanced 5 to 12 Pct Cr ferritic steels. Metall Mater Trans A 42:3084–3094CrossRef Ghassemi-Armaki H, Chen R, Maruyama K, Igarashi M (2011) Creep behavior and degradation of subgrain structures pinned by nanoscale precipitates in strength-enhanced 5 to 12 Pct Cr ferritic steels. Metall Mater Trans A 42:3084–3094CrossRef
15.
go back to reference Ghassemi-Armaki H, Chen R, Maruyama K, Igarashi M (2013) Contribution of recovery mechanisms of microstructure during long-term creep of Gr.91 steels. J Nucl Mater 433:23–29CrossRef Ghassemi-Armaki H, Chen R, Maruyama K, Igarashi M (2013) Contribution of recovery mechanisms of microstructure during long-term creep of Gr.91 steels. J Nucl Mater 433:23–29CrossRef
16.
go back to reference Eggeler G (1989) The effect of long-term creep on particle coarsening in tempered martensite ferritic steels. Acta Metall 37:3225–3234CrossRef Eggeler G (1989) The effect of long-term creep on particle coarsening in tempered martensite ferritic steels. Acta Metall 37:3225–3234CrossRef
17.
go back to reference Fournier B, Sauzay M, Pineau A (2011) Micromechanical model of the high temperature cyclic behavior of 9–12%Cr martensitic steels. Int J Plast 27:1803–1816CrossRef Fournier B, Sauzay M, Pineau A (2011) Micromechanical model of the high temperature cyclic behavior of 9–12%Cr martensitic steels. Int J Plast 27:1803–1816CrossRef
18.
go back to reference Sauzay M (2009) Modelling of the evolution of micro-grain misorientations during creep of tempered martensite ferritic steels. Mater Sci Eng A 510–511:74–80CrossRef Sauzay M (2009) Modelling of the evolution of micro-grain misorientations during creep of tempered martensite ferritic steels. Mater Sci Eng A 510–511:74–80CrossRef
19.
go back to reference Mitsuhara M, Yamasaki S, Miake M, Nakashima H, Nishida M, Kusumoto J, Kanaya A (2016) Creep strengthening by lath boundaries in 9Cr ferritic heat-resistant steel. Philos Mag Lett 96:76–83CrossRef Mitsuhara M, Yamasaki S, Miake M, Nakashima H, Nishida M, Kusumoto J, Kanaya A (2016) Creep strengthening by lath boundaries in 9Cr ferritic heat-resistant steel. Philos Mag Lett 96:76–83CrossRef
20.
go back to reference Magnusson H, Sandstrom R (2007) Creep strain modeling of 9 to 12 Pct Cr steels based on microstructure evolution. Metall Mater Trans A 38:2033–2039CrossRef Magnusson H, Sandstrom R (2007) Creep strain modeling of 9 to 12 Pct Cr steels based on microstructure evolution. Metall Mater Trans A 38:2033–2039CrossRef
21.
go back to reference Dudko VA, Belyakov AN, Kaibyshev RO (2015) Sources of high creep resistance of modern high-chromium martensitic steels. Dokl Phys Chem 464:191–193CrossRef Dudko VA, Belyakov AN, Kaibyshev RO (2015) Sources of high creep resistance of modern high-chromium martensitic steels. Dokl Phys Chem 464:191–193CrossRef
22.
go back to reference Humphreys FJ, Hatherly M (2004) Recrystallization, related annealing phenomena, 2nd edn. Elsevier, Oxford Humphreys FJ, Hatherly M (2004) Recrystallization, related annealing phenomena, 2nd edn. Elsevier, Oxford
23.
go back to reference Dudko V, Belyakov A, Kaibyshev R (2016) Origin of threshold stresses in a P92-type steel. Trans Indian Inst Met 69:223–227CrossRef Dudko V, Belyakov A, Kaibyshev R (2016) Origin of threshold stresses in a P92-type steel. Trans Indian Inst Met 69:223–227CrossRef
24.
go back to reference Cipolla L, Danielsen HK, Venditti D, Di Nunzio PE, Hald J, Somers MAJ (2010) Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel. Acta Mater 58:669–679CrossRef Cipolla L, Danielsen HK, Venditti D, Di Nunzio PE, Hald J, Somers MAJ (2010) Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel. Acta Mater 58:669–679CrossRef
25.
go back to reference Hald J (2016) Prospects for martensitic 12% Cr steels for advanced steam power plants. Trans Indian Inst Met 69:183–188CrossRef Hald J (2016) Prospects for martensitic 12% Cr steels for advanced steam power plants. Trans Indian Inst Met 69:183–188CrossRef
26.
go back to reference Rojas D, Garcia J, Prata O, Sauthoff G, Kaysser-Pyzalla AR (2011) 9%Cr heat resistant steels: alloy design, microstructure evolution and creep response at 650°C. Mater Sci Eng A 528:5164–5176CrossRef Rojas D, Garcia J, Prata O, Sauthoff G, Kaysser-Pyzalla AR (2011) 9%Cr heat resistant steels: alloy design, microstructure evolution and creep response at 650°C. Mater Sci Eng A 528:5164–5176CrossRef
27.
go back to reference Prat O, Garcia J, Rojas D, Sauthoff G, Inden G (2013) The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels. Intermetallics 32:362–372CrossRef Prat O, Garcia J, Rojas D, Sauthoff G, Inden G (2013) The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels. Intermetallics 32:362–372CrossRef
28.
go back to reference Rojas D, Garciab J, Prat O, Agudo L, Carrasco C, Sauthoff G, Kaysser-Pyzalla AR (2011) Effect of processing parameters on the evolution of dislocation density and sub-grain size of a 12%Cr heat resistant steel during creep at 650°C. Mater Sci Eng A 528:1372–1381CrossRef Rojas D, Garciab J, Prat O, Agudo L, Carrasco C, Sauthoff G, Kaysser-Pyzalla AR (2011) Effect of processing parameters on the evolution of dislocation density and sub-grain size of a 12%Cr heat resistant steel during creep at 650°C. Mater Sci Eng A 528:1372–1381CrossRef
29.
go back to reference Prat O, Garcia J, Rojas D, Carrasco C, Inden G (2010) Investigations on the growth kinetics of Laves phase precipitates in 12% Cr creep-resistant steels: experimental and DICTRA calculations. Acta Mater 58:6142–6153CrossRef Prat O, Garcia J, Rojas D, Carrasco C, Inden G (2010) Investigations on the growth kinetics of Laves phase precipitates in 12% Cr creep-resistant steels: experimental and DICTRA calculations. Acta Mater 58:6142–6153CrossRef
30.
go back to reference Helis L, Toda Y, Hara T, Miyazaki H, Abe F (2009) Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants. Mater Sci Eng A 510–511:88–94CrossRef Helis L, Toda Y, Hara T, Miyazaki H, Abe F (2009) Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants. Mater Sci Eng A 510–511:88–94CrossRef
31.
go back to reference Kipelova A, Odnobokova M, Belyakov A, Kaibyshev R (2013) Effect of Co on creep behavior of a P911 steel. Metall Mater Trans A 44:577–583CrossRef Kipelova A, Odnobokova M, Belyakov A, Kaibyshev R (2013) Effect of Co on creep behavior of a P911 steel. Metall Mater Trans A 44:577–583CrossRef
32.
go back to reference Abe F, Nakazawa Sh (1991) The effect of tungsten on creep behavior of tempered martensitic 9Cr steels. Metall Trans A 23:3025–3034CrossRef Abe F, Nakazawa Sh (1991) The effect of tungsten on creep behavior of tempered martensitic 9Cr steels. Metall Trans A 23:3025–3034CrossRef
33.
go back to reference Vanaja J, Laha K, Mathew MD (2014) Effect of tungsten on primary creep deformation and minimum creep rate of reduced activation ferritic-martensitic steel. Metall Mater Trans A 45:5076–5084CrossRef Vanaja J, Laha K, Mathew MD (2014) Effect of tungsten on primary creep deformation and minimum creep rate of reduced activation ferritic-martensitic steel. Metall Mater Trans A 45:5076–5084CrossRef
34.
go back to reference Vanaja J, Laha K (2016) Assessment of tungsten content on tertiary creep deformation behavior of reduced activation ferritic–martensitic steel. Metall Mater Trans A 46:4669–4679CrossRef Vanaja J, Laha K (2016) Assessment of tungsten content on tertiary creep deformation behavior of reduced activation ferritic–martensitic steel. Metall Mater Trans A 46:4669–4679CrossRef
35.
go back to reference Sawada K, Takeda M, Maruyama K, Ishii R, Yamada M, Nagae Y, Komine R (1999) Effect of W on recovery of lath structure during creep of high chromium martensitic steels. Mater Sci Eng A 267:19–25CrossRef Sawada K, Takeda M, Maruyama K, Ishii R, Yamada M, Nagae Y, Komine R (1999) Effect of W on recovery of lath structure during creep of high chromium martensitic steels. Mater Sci Eng A 267:19–25CrossRef
36.
go back to reference Hong SG, Lee WB, Park CG (2001) The effect of tungsten addition on the microstructural stability of 9Cr-Mo steel. J Nucl Mater 288:202–207CrossRef Hong SG, Lee WB, Park CG (2001) The effect of tungsten addition on the microstructural stability of 9Cr-Mo steel. J Nucl Mater 288:202–207CrossRef
37.
go back to reference Isik MI, Kostka A, Yardley VA, Pradeep KG, Duarte MJ, Choi PP, Raabe D, Eggeler G (2015) The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels. Acta Mater 90:94–104CrossRef Isik MI, Kostka A, Yardley VA, Pradeep KG, Duarte MJ, Choi PP, Raabe D, Eggeler G (2015) The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels. Acta Mater 90:94–104CrossRef
38.
go back to reference Fedorova I, Belyakov A, Kozlov P, Skorobogatykh V, Shenkova I, Kaibyshev R (2014) Laves phase precipitates in a low-carbon 9%Cr martensitic steel during aging and creep at 923 K. Mater Sci Eng A 615:153–163CrossRef Fedorova I, Belyakov A, Kozlov P, Skorobogatykh V, Shenkova I, Kaibyshev R (2014) Laves phase precipitates in a low-carbon 9%Cr martensitic steel during aging and creep at 923 K. Mater Sci Eng A 615:153–163CrossRef
39.
go back to reference Kipelova A, Belyakov A, Kaibyshev R (2012) Laves phase evolution in a modified P911 heat resistant steel during creep at 923K. Mater Sci Eng A 532:71–77CrossRef Kipelova A, Belyakov A, Kaibyshev R (2012) Laves phase evolution in a modified P911 heat resistant steel during creep at 923K. Mater Sci Eng A 532:71–77CrossRef
40.
go back to reference Zhu S, Yang M, Song XL, Zhang Z, Wang LB, Tang S, Xiang ZD (2014) A few observations on Laves phase precipitation in relation to its effects on creep rupture strength of ferritic steels based on Fe–9Cr (wt%) alloys at 650 °C. Mater Sci Eng A 619:47–56CrossRef Zhu S, Yang M, Song XL, Zhang Z, Wang LB, Tang S, Xiang ZD (2014) A few observations on Laves phase precipitation in relation to its effects on creep rupture strength of ferritic steels based on Fe–9Cr (wt%) alloys at 650 °C. Mater Sci Eng A 619:47–56CrossRef
41.
go back to reference Li Q (2006) Precipitation of Fe2W Laves phase and modeling of its direct influence on the strength of a 12Cr-2 W steel. Metall Mater Trans A 37:89–97CrossRef Li Q (2006) Precipitation of Fe2W Laves phase and modeling of its direct influence on the strength of a 12Cr-2 W steel. Metall Mater Trans A 37:89–97CrossRef
42.
go back to reference Abe F (2005) Effect of fine precipitation and subsequent coarsening of Fe2W Laves phase on the creep deformation behavior of tempered martensitic 9Cr-W steels. Metall Mater Trans A 36:321–332CrossRef Abe F (2005) Effect of fine precipitation and subsequent coarsening of Fe2W Laves phase on the creep deformation behavior of tempered martensitic 9Cr-W steels. Metall Mater Trans A 36:321–332CrossRef
43.
go back to reference Kimura K, Sawada K, Kushima H, Kubo K (2008) Effect of stress on creep deformation property of ASME Grade P92/T92 steels. J Mater Res 99:395–401 Kimura K, Sawada K, Kushima H, Kubo K (2008) Effect of stress on creep deformation property of ASME Grade P92/T92 steels. J Mater Res 99:395–401
44.
go back to reference Hirsch PB, Howie A, Nicholson RB et al (1977) Electron microscopy of thin crystals, 2nd edn. Krieger, New York Hirsch PB, Howie A, Nicholson RB et al (1977) Electron microscopy of thin crystals, 2nd edn. Krieger, New York
46.
go back to reference Tabuchi M, Hongo H, Abe F (2014) Creep strength of dissimilar welded joints using high B-9Cr steel for advanced USC boiler. Metall Mater Trans A 45:5068–5075CrossRef Tabuchi M, Hongo H, Abe F (2014) Creep strength of dissimilar welded joints using high B-9Cr steel for advanced USC boiler. Metall Mater Trans A 45:5068–5075CrossRef
47.
go back to reference Liu Y, Tsukamoto S, Sawada K, Tabuchi M, Abe F (2015) Precipitation behavior in the heat-affected zone of boron-added 9Cr-3 W-3Co steel during post-weld heat treatment and creep deformation. Metall Mater Trans A 46:1843–1854CrossRef Liu Y, Tsukamoto S, Sawada K, Tabuchi M, Abe F (2015) Precipitation behavior in the heat-affected zone of boron-added 9Cr-3 W-3Co steel during post-weld heat treatment and creep deformation. Metall Mater Trans A 46:1843–1854CrossRef
48.
go back to reference Kaibyshev R, Mishnev R, Tkachev E, Dudova N (2016) Effect of Ni and Mn on the creep behavior of 9-10%Cr steels with low N and high B. Trans Indian Inst Met 69:203–210CrossRef Kaibyshev R, Mishnev R, Tkachev E, Dudova N (2016) Effect of Ni and Mn on the creep behavior of 9-10%Cr steels with low N and high B. Trans Indian Inst Met 69:203–210CrossRef
49.
go back to reference Cadek J (1994) Creep in metallic materials. Academia, Prague Cadek J (1994) Creep in metallic materials. Academia, Prague
50.
go back to reference Kassner ME, Pérez-Prado MT (2004) Fundamentals of creep in metals and alloys, 1st edn. Elsevier, New York Kassner ME, Pérez-Prado MT (2004) Fundamentals of creep in metals and alloys, 1st edn. Elsevier, New York
51.
go back to reference Monkman FC, Grant NJ (1956) Relationship between rupture life and minimum creep rate in creep-rupture tests. Proc ASTM 56:593–620 Monkman FC, Grant NJ (1956) Relationship between rupture life and minimum creep rate in creep-rupture tests. Proc ASTM 56:593–620
52.
go back to reference Dudova N, Kaibyshev R (2011) On the precipitation sequence in a 10%Cr steel under tempering. ISIJ Int 51:826–831CrossRef Dudova N, Kaibyshev R (2011) On the precipitation sequence in a 10%Cr steel under tempering. ISIJ Int 51:826–831CrossRef
53.
go back to reference Fedoseeva A, Dudova N, Kaibyshev R (2016) Effect of tungsten on a dispersion of M(C, N) carbonitrides in 9% Cr steels under creep conditions. Trans Indian Inst Met 69(2):211–215CrossRef Fedoseeva A, Dudova N, Kaibyshev R (2016) Effect of tungsten on a dispersion of M(C, N) carbonitrides in 9% Cr steels under creep conditions. Trans Indian Inst Met 69(2):211–215CrossRef
54.
go back to reference Mishnev R, Dudova N, Fedoseeva A, Kaibyshev R (2016) Microstructural aspects of superior creep resistance of a 10%Cr martensitic steel. Mater Sci Eng A 678:178–189CrossRef Mishnev R, Dudova N, Fedoseeva A, Kaibyshev R (2016) Microstructural aspects of superior creep resistance of a 10%Cr martensitic steel. Mater Sci Eng A 678:178–189CrossRef
55.
go back to reference Porter DA, Esterling KE, Sherif M (2009) Phase transformation in metals and alloys, 3rd edn. CRS Press, Boca Raton Porter DA, Esterling KE, Sherif M (2009) Phase transformation in metals and alloys, 3rd edn. CRS Press, Boca Raton
56.
go back to reference Hattestrand A, Andren HO (2001) Influence of strain on precipitation reactions during creep of an advanced 9% chromium steel. Acta Mater 49:2123–2128CrossRef Hattestrand A, Andren HO (2001) Influence of strain on precipitation reactions during creep of an advanced 9% chromium steel. Acta Mater 49:2123–2128CrossRef
57.
go back to reference Ghassemi-Armaki H, Chen R, Kano S, Maruyama K, Hasegawa Y, Igarashi M (2012) Strain-induced coarsening of nanoscale precipitates in strength enhanced high Cr ferritic steels. Mater Sci Eng A 532:373–380CrossRef Ghassemi-Armaki H, Chen R, Kano S, Maruyama K, Hasegawa Y, Igarashi M (2012) Strain-induced coarsening of nanoscale precipitates in strength enhanced high Cr ferritic steels. Mater Sci Eng A 532:373–380CrossRef
Metadata
Title
Creep behavior and microstructure of a 9Cr–3Co–3W martensitic steel
Authors
A. Fedoseeva
N. Dudova
R. Kaibyshev
Publication date
01-03-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0595-z

Other articles of this Issue 5/2017

Journal of Materials Science 5/2017 Go to the issue

Premium Partners