Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 12/2020

01-10-2020

Creep Deformation and Dynamic Grain Growth in an Interstitial-Free Steel

Authors: Ryann E. Rupp, Philip J. Noell, Eric M. Taleff

Published in: Metallurgical and Materials Transactions A | Issue 12/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dynamic grain growth is demonstrated to be much faster than static grain growth in a body-centered-cubic, interstitial-free steel sheet material at 850\(\,^\circ {\rm{C}}\). Dynamic grain growth occurs during concurrent plastic deformation at elevated temperature, whereas static grain growth occurs during static annealing. Grain growth during steady-state plastic flow in tension at 850\(\,^\circ {\rm{C}}\) to a true strain of 0.2 at a true-strain rate of \(10^{-4}\) \({\rm{s}}^{-1}\) doubled grain size, while static annealing for the same time produced no increase in grain size. This is described as dynamic normal grain growth (DNGG) because no abnormally large grains were observed. The recrystallized microstructure of the steel demonstrated a log-normal distribution of grain sizes. DNGG produced bimodal grain size distributions that deviate from the theoretical expectation of a simple shift to larger sizes during normal growth. The bimodal distributions contained a remnant of small grains that were not consumed during grain growth. DNGG produced a crystallographic texture that is unique from both the recrystallized material and that produced by lattice rotation alone. DNGG strengthened the \(\{111\} \langle 110 \rangle \) and \(\{111\} \langle 112 \rangle \) components of the strong \(\gamma \)-fiber component in the original recrystallization texture. Lattice rotation from tensile deformation, by contrast, strengthened the \(\alpha \)-fiber components that intersect the original \(\gamma \)-fiber.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Maps of Taylor factor can be readily generated using the MTEX software package for comparison against Figure 13.
 
Literature
1.
go back to reference G. Krauss, Steels: Processing, Structure, and Performance, ASM International, Materials Park, OH, 21, 226–230 (2005) G. Krauss, Steels: Processing, Structure, and Performance, ASM International, Materials Park, OH, 21, 226–230 (2005)
2.
go back to reference W.T. Lankford, S. C. Snyder, J. A. Bauscher, Trans. A.S.M., 1950, vol. 42, 1197–1232. W.T. Lankford, S. C. Snyder, J. A. Bauscher, Trans. A.S.M., 1950, vol. 42, 1197–1232.
3.
go back to reference R. K. Ray, J. J. Jonas, R. E. Hook, Int. Mater. Rev., 93, 129–172 (1994)CrossRef R. K. Ray, J. J. Jonas, R. E. Hook, Int. Mater. Rev., 93, 129–172 (1994)CrossRef
4.
go back to reference N. Yoshinaga, N. Sugiura, S. Hiwatashi, K. Ushioda, O. Kada, ISIJ Int., 48, 667–670 (2008)CrossRef N. Yoshinaga, N. Sugiura, S. Hiwatashi, K. Ushioda, O. Kada, ISIJ Int., 48, 667–670 (2008)CrossRef
5.
6.
7.
go back to reference J. G. Byrne, Recovery, Recrystallization, and Grain Growth, The MacMillian Company, New York (1965) J. G. Byrne, Recovery, Recrystallization, and Grain Growth, The MacMillian Company, New York (1965)
8.
go back to reference F. J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, New York (2004) F. J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, New York (2004)
9.
10.
go back to reference P. Friedman, A. Ghosh, Metall. Mater. Trans. A, 27, 3827–3839 (1996)CrossRef P. Friedman, A. Ghosh, Metall. Mater. Trans. A, 27, 3827–3839 (1996)CrossRef
11.
go back to reference P. Bate, K. Hyde, S. Court, F. Humphreys, Mater. Sci. Forum, vol. 447-448, 61–66 (2004)CrossRef P. Bate, K. Hyde, S. Court, F. Humphreys, Mater. Sci. Forum, vol. 447-448, 61–66 (2004)CrossRef
12.
13.
go back to reference K. Okayasu, H. Takekoshi, H. Fukutomi, Mater. Trans., 48, 2002–2007 (2007)CrossRef K. Okayasu, H. Takekoshi, H. Fukutomi, Mater. Trans., 48, 2002–2007 (2007)CrossRef
14.
go back to reference K. Okayasu, S. Takahata, H. Fukutomi, Mater. Sci. Forum, vol. 702–703, 336–339 (2012) K. Okayasu, S. Takahata, H. Fukutomi, Mater. Sci. Forum, vol. 702–703, 336–339 (2012)
15.
go back to reference Y. Onuki, R. Hongo, K. Okayasu, H. Fukutomi, Acta Mater., 61, 1294–1302 (2013)CrossRef Y. Onuki, R. Hongo, K. Okayasu, H. Fukutomi, Acta Mater., 61, 1294–1302 (2013)CrossRef
16.
17.
go back to reference N. A. Pedrazas, T. E. Buchheit, E. A. Holm, E. M. Taleff, Mater. Sci. Eng. A, 610, 76–84 (2013)CrossRef N. A. Pedrazas, T. E. Buchheit, E. A. Holm, E. M. Taleff, Mater. Sci. Eng. A, 610, 76–84 (2013)CrossRef
18.
go back to reference D. L. Worthington, N. A. Pedrazas, E. M. Taleff, Metall. Mater. Trans. A, 44, 5025–5038 (2013)CrossRef D. L. Worthington, N. A. Pedrazas, E. M. Taleff, Metall. Mater. Trans. A, 44, 5025–5038 (2013)CrossRef
19.
go back to reference P. J. Noell, D. L. Worthington, E. M. Taleff, Metall. Mater. Trans. A, 46, 5709–5718 (2015) P. J. Noell, D. L. Worthington, E. M. Taleff, Metall. Mater. Trans. A, 46, 5709–5718 (2015)
20.
go back to reference P. J. Noell, E. M. Taleff, Metall. Mater. Trans. A, 47, 5023–5036 (2016)CrossRef P. J. Noell, E. M. Taleff, Metall. Mater. Trans. A, 47, 5023–5036 (2016)CrossRef
21.
go back to reference P. J. Noell, D. L. Worthington, E. M. Taleff, Mater. Sci. Eng. A, 692, 24–34 (2017)CrossRef P. J. Noell, D. L. Worthington, E. M. Taleff, Mater. Sci. Eng. A, 692, 24–34 (2017)CrossRef
22.
go back to reference P. J. Noell, E. M. Taleff, Metall. Mater. Trans. A, 50, 4608–4619 (2019)CrossRef P. J. Noell, E. M. Taleff, Metall. Mater. Trans. A, 50, 4608–4619 (2019)CrossRef
23.
go back to reference H.-J. Bunge, Texture Analysis in Materials Science: Mathematical Methods, digital edition, Butterworth & Co., 1982. H.-J. Bunge, Texture Analysis in Materials Science: Mathematical Methods, digital edition, Butterworth & Co., 1982.
24.
go back to reference U. F. Kocks, C. N. Tomé, H.-R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties, Cambridge University Press, Cambridge, UK (1998) U. F. Kocks, C. N. Tomé, H.-R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties, Cambridge University Press, Cambridge, UK (1998)
25.
go back to reference V. Randle, Microtexture Determination and Its Applications, The Institute of Materials, London (1992) V. Randle, Microtexture Determination and Its Applications, The Institute of Materials, London (1992)
26.
go back to reference ASTM International: Standard Designation E 18–17 \(^{\epsilon 1}\), ASTM International, West Conshohocken, PA, 2017. ASTM International: Standard Designation E 18–17 \(^{\epsilon 1}\), ASTM International, West Conshohocken, PA, 2017.
27.
go back to reference R.E. Rupp, Dynamic Normal Grain Growth in BCC Interstitial-Free Steel During Hot Deformation, Ph.D. Thesis, The University of Texas at Austin, August 2018. R.E. Rupp, Dynamic Normal Grain Growth in BCC Interstitial-Free Steel During Hot Deformation, Ph.D. Thesis, The University of Texas at Austin, August 2018.
28.
go back to reference ASTM International: Standard Designation E 112–13, ASTM International, West Conshohocken, PA, July 2013. ASTM International: Standard Designation E 112–13, ASTM International, West Conshohocken, PA, July 2013.
29.
go back to reference Wolfram Research, Inc.: Mathematica, Version 11.2, 2017. Wolfram Research, Inc.: Mathematica, Version 11.2, 2017.
30.
go back to reference N.A. Pedrazas, Dynamic Abnormal Grain Growth in Selected Refractory Metals, Ph.D. Thesis, The University of Texas at Austin, August 2013. N.A. Pedrazas, Dynamic Abnormal Grain Growth in Selected Refractory Metals, Ph.D. Thesis, The University of Texas at Austin, August 2013.
31.
go back to reference F. Bachmann, R. Hielscher, H. Schaeben, Solid State Phenom., 160, 63–68 (2010)CrossRef F. Bachmann, R. Hielscher, H. Schaeben, Solid State Phenom., 160, 63–68 (2010)CrossRef
32.
go back to reference MathWorks, Inc.: Matlab, Version R2014b, 2014. MathWorks, Inc.: Matlab, Version R2014b, 2014.
33.
go back to reference ASTM International: Standard Designation E 2627–13, ASTM International, West Conshohocken, PA, 2013. ASTM International: Standard Designation E 2627–13, ASTM International, West Conshohocken, PA, 2013.
34.
35.
36.
go back to reference J.E. Bird, A.K. Mukherjee, J.E. Dorn: in D.G. Brandon and A. Rosen, eds., Proceedings of the International Conference on Quantitative Relation Between Properties and Microstructure, Israel Universities Press, Haifa, Israel, 1969, pp. 255–342. J.E. Bird, A.K. Mukherjee, J.E. Dorn: in D.G. Brandon and A. Rosen, eds., Proceedings of the International Conference on Quantitative Relation Between Properties and Microstructure, Israel Universities Press, Haifa, Israel, 1969, pp. 255–342.
37.
go back to reference S. Karashima, T. Iikubo, H. Oikawa, Trans. JIM, 13, 176–181 (1972)CrossRef S. Karashima, T. Iikubo, H. Oikawa, Trans. JIM, 13, 176–181 (1972)CrossRef
38.
go back to reference R. G. Stang, W. D. Nix, C. R. Barrett, Metall. Trans. A, 6, 2065–2017 (1975)CrossRef R. G. Stang, W. D. Nix, C. R. Barrett, Metall. Trans. A, 6, 2065–2017 (1975)CrossRef
39.
go back to reference C. R. Barrett, W. D. Nix, O. D. Sherby, ASM Trans., 59, 3–15 (1966) C. R. Barrett, W. D. Nix, O. D. Sherby, ASM Trans., 59, 3–15 (1966)
40.
go back to reference O. D. Sherby, R. H. Klundt, A. K. Miller, Metall. Trans. A, vol. 8, 843–850 (1977)CrossRef O. D. Sherby, R. H. Klundt, A. K. Miller, Metall. Trans. A, vol. 8, 843–850 (1977)CrossRef
41.
go back to reference T. R. McNelley, K. Oh-oishi, A. P. Zhilyaev, S. Swaminathan, P. E. Krajewski, E. M. Taleff, Metall. Mater. Trans. A, 39, 50–64 (2008)CrossRef T. R. McNelley, K. Oh-oishi, A. P. Zhilyaev, S. Swaminathan, P. E. Krajewski, E. M. Taleff, Metall. Mater. Trans. A, 39, 50–64 (2008)CrossRef
42.
go back to reference S. Takaki, D. Akama, N. Nakada, T. Tsuchiyama, Mater. Trans. (JIM), 55, 28–34 (2014)CrossRef S. Takaki, D. Akama, N. Nakada, T. Tsuchiyama, Mater. Trans. (JIM), 55, 28–34 (2014)CrossRef
43.
go back to reference M. E. Kassner, Fundamentals of Creep in Metals and Alloys, 3rd ed., Elsevier Science, Burlington, MA, 7–102 (2015)CrossRef M. E. Kassner, Fundamentals of Creep in Metals and Alloys, 3rd ed., Elsevier Science, Burlington, MA, 7–102 (2015)CrossRef
44.
go back to reference K. Werner, Z. Metallkd., 39, 1–9 (1948) K. Werner, Z. Metallkd., 39, 1–9 (1948)
45.
go back to reference H. Oikawa, Technol. Rep. Tohoku Univ., 47, 67–77 (1982) H. Oikawa, Technol. Rep. Tohoku Univ., 47, 67–77 (1982)
47.
go back to reference T. G. Nieh, J. Wadsworth, O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, New York, NY (1997)CrossRef T. G. Nieh, J. Wadsworth, O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, New York, NY (1997)CrossRef
48.
50.
go back to reference C.S. Barrett and T.B. Massalski, Structure of Metals: Crystallographic Methods, Principles and Data, 3rd revised ed., Pergamon Press, Oxford, U.K., 1980. C.S. Barrett and T.B. Massalski, Structure of Metals: Crystallographic Methods, Principles and Data, 3rd revised ed., Pergamon Press, Oxford, U.K., 1980.
Metadata
Title
Creep Deformation and Dynamic Grain Growth in an Interstitial-Free Steel
Authors
Ryann E. Rupp
Philip J. Noell
Eric M. Taleff
Publication date
01-10-2020
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 12/2020
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-06014-6

Other articles of this Issue 12/2020

Metallurgical and Materials Transactions A 12/2020 Go to the issue

Metallurgical and Materials Transactions 50th Anniversary Collection

Design and Tailoring of Alloys for Additive Manufacturing

Premium Partners