Skip to main content
Top

2021 | OriginalPaper | Chapter

Cross-Domain Transfer of Generative Explanations Using Text-to-Text Models

Authors : Karl Fredrik Erliksson, Anders Arpteg, Mihhail Matskin, Amir H. Payberah

Published in: Natural Language Processing and Information Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep learning models based on the Transformers architecture have achieved impressive state-of-the-art results and even surpassed human-level performance across various natural language processing tasks. However, these models remain opaque and hard to explain due to their vast complexity and size. This limits adoption in highly-regulated domains like medicine and finance, and often there is a lack of trust from non-expert end-users. In this paper, we show that by teaching a model to generate explanations alongside its predictions on a large annotated dataset, we can transfer this capability to a low-resource task in another domain. Our proposed three-step training procedure improves explanation quality by up to 7% and avoids sacrificing classification performance on the downstream task, while at the same time reducing the need for human annotations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
2
Since all seq2seq models considered in this work have publicly released checkpoints from language model pre-training, this is used as starting point for step 2 in Fig. 1.
 
3
We use the dataset versions distributed through the ERASER benchmark [10].
 
4
The hyperparameter settings for the different models and training phases are available in the public code repository.
 
Literature
1.
go back to reference Bastings, J., et al.: Interpretable neural predictions with differentiable binary variables. In: ACL (2019) Bastings, J., et al.: Interpretable neural predictions with differentiable binary variables. In: ACL (2019)
2.
go back to reference Bowman, S.R., et al.: A large annotated corpus for learning natural language inference. In: EMNLP (2015) Bowman, S.R., et al.: A large annotated corpus for learning natural language inference. In: EMNLP (2015)
3.
go back to reference Brunner, G., et al.: On identifiability in transformers. In: ICLR (2019) Brunner, G., et al.: On identifiability in transformers. In: ICLR (2019)
4.
go back to reference Camburu, O., et al.: e-SNLI: natural language inference with natural language explanations. In: NeurIPS (2018) Camburu, O., et al.: e-SNLI: natural language inference with natural language explanations. In: NeurIPS (2018)
5.
go back to reference Chen, C., et al.: This looks like that: Deep learning for interpretable image recognition. In: NeurIPS (2019) Chen, C., et al.: This looks like that: Deep learning for interpretable image recognition. In: NeurIPS (2019)
6.
go back to reference Clark, K., et al.: What does BERT look at? An analysis of BERT’S attention. In: ACL Blackbox NLP Workshop (2019) Clark, K., et al.: What does BERT look at? An analysis of BERT’S attention. In: ACL Blackbox NLP Workshop (2019)
8.
go back to reference Danilevsky, M., et al.: A survey of the state of explainable AI for natural language processing. In: AACL-IJCNLP (2020) Danilevsky, M., et al.: A survey of the state of explainable AI for natural language processing. In: AACL-IJCNLP (2020)
9.
go back to reference Devlin, J., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019) Devlin, J., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)
10.
go back to reference DeYoung, J., et al.: ERASER: a benchmark to evaluate rationalized NLP models. In: ACL (2020) DeYoung, J., et al.: ERASER: a benchmark to evaluate rationalized NLP models. In: ACL (2020)
11.
12.
go back to reference Ehsan, U., et al.: Rationalization: a neural machine translation approach to generating natural language explanations. In: AIES (2018) Ehsan, U., et al.: Rationalization: a neural machine translation approach to generating natural language explanations. In: AIES (2018)
14.
go back to reference Guidotti, R., et al.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 1–42 (2018)CrossRef Guidotti, R., et al.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 1–42 (2018)CrossRef
15.
go back to reference He, K., et al.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV (2015) He, K., et al.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV (2015)
17.
go back to reference Jacovi, A., et al.: Towards faithfully interpretable NLP systems: how should we define and evaluate faithfulness? In: ACL (2020) Jacovi, A., et al.: Towards faithfully interpretable NLP systems: how should we define and evaluate faithfulness? In: ACL (2020)
18.
go back to reference Jain, S., et al.: An analysis of attention over clinical notes for predictive tasks. In: Clinical NLP (2019) Jain, S., et al.: An analysis of attention over clinical notes for predictive tasks. In: Clinical NLP (2019)
19.
go back to reference Jain, S., et al.: Attention is not explanation. In: NAACL (2019) Jain, S., et al.: Attention is not explanation. In: NAACL (2019)
20.
go back to reference Khashabi, D., et al.: Looking beyond the surface: a challenge set for reading comprehension over multiple sentences. In: NAACL (2018) Khashabi, D., et al.: Looking beyond the surface: a challenge set for reading comprehension over multiple sentences. In: NAACL (2018)
21.
go back to reference Kim, B., et al.: The Bayesian case model: a generative approach for case-based reasoning and prototype classification. In: NIPS (2014) Kim, B., et al.: The Bayesian case model: a generative approach for case-based reasoning and prototype classification. In: NIPS (2014)
23.
go back to reference Kovaleva, O., et al.: Revealing the dark secrets of BERT. In: NeurIPS (2019) Kovaleva, O., et al.: Revealing the dark secrets of BERT. In: NeurIPS (2019)
24.
go back to reference Lehman, E., et al.: Inferring which medical treatments work from reports of clinical trials. In: NAACL (2019) Lehman, E., et al.: Inferring which medical treatments work from reports of clinical trials. In: NAACL (2019)
25.
go back to reference Lei, T., et al.: Rationalizing neural predictions. In: EMNLP (2016) Lei, T., et al.: Rationalizing neural predictions. In: EMNLP (2016)
26.
go back to reference Letham, B., et al.: Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model. Ann. Appl. Stat. 9, 1350–1371 (2015)MathSciNetCrossRef Letham, B., et al.: Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model. Ann. Appl. Stat. 9, 1350–1371 (2015)MathSciNetCrossRef
27.
go back to reference Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: ACL (2020) Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: ACL (2020)
28.
go back to reference Lin, C.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization Branches Out (2004) Lin, C.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization Branches Out (2004)
29.
go back to reference Lundberg, S., et al.: A unified approach to interpreting model predictions. In: NIPS (2017) Lundberg, S., et al.: A unified approach to interpreting model predictions. In: NIPS (2017)
30.
go back to reference Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)MathSciNetCrossRef Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)MathSciNetCrossRef
31.
go back to reference Mullenbach, J., et al.: Explainable prediction of medical codes from clinical text. In: NAACL (2018) Mullenbach, J., et al.: Explainable prediction of medical codes from clinical text. In: NAACL (2018)
32.
33.
go back to reference Papineni, K., et al.: BLEU: a method for automatic evaluation of machine translation. In: ACL (2002) Papineni, K., et al.: BLEU: a method for automatic evaluation of machine translation. In: ACL (2002)
34.
go back to reference Paranjape, B., et al.: An information bottleneck approach for controlling conciseness in rationale extraction. In: EMNLP (2020) Paranjape, B., et al.: An information bottleneck approach for controlling conciseness in rationale extraction. In: EMNLP (2020)
35.
go back to reference Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR (2020) Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR (2020)
36.
go back to reference Rajani, N., et al.: Explain yourself! Leveraging language models for commonsense reasoning. In: ACL (2019) Rajani, N., et al.: Explain yourself! Leveraging language models for commonsense reasoning. In: ACL (2019)
37.
go back to reference Ribeiro, M., et al.: Why should i trust you? Explaining the predictions of any classifier. In: KDD (2016) Ribeiro, M., et al.: Why should i trust you? Explaining the predictions of any classifier. In: KDD (2016)
38.
go back to reference Serrano, S., et al.: Is attention interpretable? In: ACL (2019) Serrano, S., et al.: Is attention interpretable? In: ACL (2019)
39.
go back to reference Sundararajan, M.: Axiomatic attribution for deep networks. In: ICML (2017) Sundararajan, M.: Axiomatic attribution for deep networks. In: ICML (2017)
40.
go back to reference Thorne, J., et al.: FEVER: a large-scale dataset for fact extraction and verification. In: NAACL (2018) Thorne, J., et al.: FEVER: a large-scale dataset for fact extraction and verification. In: NAACL (2018)
41.
go back to reference Vaswani, A., et al.: Attention is all you need. In: NIPS (2017) Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)
42.
go back to reference Wadden, D., et al.: Fact or fiction: verifying scientific claims. In: EMNLP (2020) Wadden, D., et al.: Fact or fiction: verifying scientific claims. In: EMNLP (2020)
43.
go back to reference Wang, A., et al.: Superglue: a stickier benchmark for general-purpose language understanding systems. In: NeurIPS (2019) Wang, A., et al.: Superglue: a stickier benchmark for general-purpose language understanding systems. In: NeurIPS (2019)
44.
go back to reference Wiegreffe, S., et al.: Attention is not not explanation. In: EMNLP-IJCNLP (2019) Wiegreffe, S., et al.: Attention is not not explanation. In: EMNLP-IJCNLP (2019)
45.
46.
Metadata
Title
Cross-Domain Transfer of Generative Explanations Using Text-to-Text Models
Authors
Karl Fredrik Erliksson
Anders Arpteg
Mihhail Matskin
Amir H. Payberah
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-80599-9_8

Premium Partner