Skip to main content
Top

2021 | OriginalPaper | Chapter

Crowd Management for Power Generation: A Critical Analysis on the Existing Materials and Methods. (Structural Modal Analysis)

Authors : Abdulaziz O. Alnuman, Muhammad A. Khan, Andrew Starr

Published in: Proceedings of the 8th International Conference on Fracture, Fatigue and Wear

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Energy harvesting by means of different materials and mechanisms is considered an important topic of interest in past decades. Materials such as piezoelectric, electromagnetic and electrostatic in nature are generally used to harvest energy in many of the sensing applications. Mechanisms based on simple deformation, vibration and magnetism are used to harvest energies in power generation applications. The published research shows that the harvested energy from these materials and mechanisms are still far away from practical feasibility and optimisation. However, not a single review article is available which can provide a critical analysis on the existing materials and methods with regards to the mentioned feasibility and optimisation. In this paper, a review attempt has been made to describe the mentioned analysis. All the past research is described in two categories: Energy Harvesting through Materials and Energy Harvesting through Mechanisms. The materials used for energy harvesting contain characteristic to release electric charge under the influence of an external excitation. Several materials such as Multiwalled Carbon Nano Tubes (MWCNT), Polyvinylidene Fluoride (PVDF), Polydimethyl siloxane (PDMS) and ZirconateTitanate (PZT) with slight change in their internal properties and efficiencies are used to harvest charge. In contrast to the materials, several mechanisms are also in use to produce useful energy from available external forces. Their mechanics is principally based on phenomena like structural vibrations, electromagnetic induction, and magnetism. This review concludes that a methodology of energy harvesting which can utilise any random load and converts into maximum useful energy is still not present.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Patlins A, Hnatov A, Arhun S, Dzyubenko O (2019) Design and research of constructive features of paving slabs for power generation by pedestrians. Transp Res Procedia 40:434–441CrossRef Patlins A, Hnatov A, Arhun S, Dzyubenko O (2019) Design and research of constructive features of paving slabs for power generation by pedestrians. Transp Res Procedia 40:434–441CrossRef
2.
go back to reference Bischur E, Schwesinger N (2012) Energy harvestingfrom floor using organic piezoelectric modules. In: 2012 power engineering and automation conference, pp 1–4 Bischur E, Schwesinger N (2012) Energy harvestingfrom floor using organic piezoelectric modules. In: 2012 power engineering and automation conference, pp 1–4
3.
go back to reference A review on energy harvesting from road. Andriopoulou Symeoni M.Sc. Environmental Engineering & Sustainable Infrastructure, pp 1–39 A review on energy harvesting from road. Andriopoulou Symeoni M.Sc. Environmental Engineering & Sustainable Infrastructure, pp 1–39
5.
go back to reference Ka TJ, Wang L (2011) Modelling, performance optimisation and automated design of mixed-technology energy harvester systems. Ka TJ, Wang L (2011) Modelling, performance optimisation and automated design of mixed-technology energy harvester systems.
6.
go back to reference Science M (2006) Energy harvesting vibration sources for microsystems applications Science M (2006) Energy harvesting vibration sources for microsystems applications
7.
go back to reference Gholikhani M, Roshani H, Dessouky S, Papagiannakis AT (2020) A critical review of roadway energy harvesting technologies Appl. Energy 261:114388 Gholikhani M, Roshani H, Dessouky S, Papagiannakis AT (2020) A critical review of roadway energy harvesting technologies Appl. Energy 261:114388
8.
go back to reference Maghsoudi Nia E, Wan Abdullah Zawawi NA, Mahinder Singh BS (2019) Design of a pavement using piezoelectric materials. Materwiss Werksttech 50(3):320–328 Maghsoudi Nia E, Wan Abdullah Zawawi NA, Mahinder Singh BS (2019) Design of a pavement using piezoelectric materials. Materwiss Werksttech 50(3):320–328
9.
go back to reference Science M (1977) Thick-film sensors : past, present and future Science M (1977) Thick-film sensors : past, present and future
10.
go back to reference Lovinger AJ (1983) Ci ence (1) 220(4602):1115–1122 Lovinger AJ (1983) Ci ence (1) 220(4602):1115–1122
11.
go back to reference Baudry H Screen printing piezoelectric devices. pp 71–74 Baudry H Screen printing piezoelectric devices. pp 71–74
12.
go back to reference Singh S, Gupta VK, Mukherjee S (2018) Piezo electric based energy harvester embedded in shoe for wearable electronics. Mater Phys Mech 37(2):159–167 Singh S, Gupta VK, Mukherjee S (2018) Piezo electric based energy harvester embedded in shoe for wearable electronics. Mater Phys Mech 37(2):159–167
13.
go back to reference Richards CD, Anderson MJ, Bahr DF, Richards RF (2004) Efficiency of energy conversion for devices containing a piezoelectric component Richards CD, Anderson MJ, Bahr DF, Richards RF (2004) Efficiency of energy conversion for devices containing a piezoelectric component
14.
go back to reference Nakajima T, Okaya K, Ohta K, Furukawa T, Okamura S (2011) Performance of piezoelectric power generation of multilayered poly(vinylidene fluoride) under high mechanical strain. Jpn J Appl Phys50(9) Nakajima T, Okaya K, Ohta K, Furukawa T, Okamura S (2011) Performance of piezoelectric power generation of multilayered poly(vinylidene fluoride) under high mechanical strain. Jpn J Appl Phys50(9)
15.
go back to reference Towards a piezoelectric vibration-powered microgenerator. 148(2) Towards a piezoelectric vibration-powered microgenerator. 148(2)
16.
go back to reference Academy R Performance optimization of piezoelectric Academy R Performance optimization of piezoelectric
17.
go back to reference M’Boungui G, Adendorff K, Naidoo R, Jimoh AA, Okojie DE (2015) A hybrid piezoelectric micro-power generator for use in low power applications. Renew Sustain Energy Rev 49:1136–1144CrossRef M’Boungui G, Adendorff K, Naidoo R, Jimoh AA, Okojie DE (2015) A hybrid piezoelectric micro-power generator for use in low power applications. Renew Sustain Energy Rev 49:1136–1144CrossRef
18.
go back to reference Vullers RJM, van Schaijk R, Doms I, Van Hoof C, Mertens R (2009) Micropower energy harvesting. Solid State Electron 53(7):684–693CrossRef Vullers RJM, van Schaijk R, Doms I, Van Hoof C, Mertens R (2009) Micropower energy harvesting. Solid State Electron 53(7):684–693CrossRef
19.
go back to reference Xu TB et al (2013) Energy harvesting using a PZT ceramic multilayer stack. Smart Mater Struct 22(6) Xu TB et al (2013) Energy harvesting using a PZT ceramic multilayer stack. Smart Mater Struct 22(6)
20.
go back to reference Shenck NS, Paradiso JA (2001) Energy scavenging with shoe-mounted piezoelectrics electricity from the forces exerted on a shoe during walking : A, pp 30–42 Shenck NS, Paradiso JA (2001) Energy scavenging with shoe-mounted piezoelectrics electricity from the forces exerted on a shoe during walking : A, pp 30–42
21.
go back to reference Renaud M, Fiorini P, Van R, Renaud M, Fiorini P, Van Hoof C (2007) Optimization of a piezoelectric unimorph for shock and impact energy harvesting Renaud M, Fiorini P, Van R, Renaud M, Fiorini P, Van Hoof C (2007) Optimization of a piezoelectric unimorph for shock and impact energy harvesting
22.
go back to reference Kiziroglou ME, Yeatman EM (2012) Materials and techniques for energy harvesting Woodhead Publishing Limited Kiziroglou ME, Yeatman EM (2012) Materials and techniques for energy harvesting Woodhead Publishing Limited
23.
go back to reference Moon FC (1978) Problems in magneto-solid mechanics, vol. 4. Pergamon Press Inc Moon FC (1978) Problems in magneto-solid mechanics, vol. 4. Pergamon Press Inc
24.
go back to reference Challa CR, Prasad MG, Shi Y, Fisher FT (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 17(1) Challa CR, Prasad MG, Shi Y, Fisher FT (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 17(1)
25.
go back to reference Fajardo S, García-Galvan FR, Barranco V, Galvan JC, Batlle SF (201) We are intechopen, the world’ s leading publisher of open access books built by scientists, for scientists TOP 1%. Intech, vol. i, no. tourism, p 13 Fajardo S, García-Galvan FR, Barranco V, Galvan JC, Batlle SF (201) We are intechopen, the world’ s leading publisher of open access books built by scientists, for scientists TOP 1%. Intech, vol. i, no. tourism, p 13
26.
go back to reference Roundy S, Wright PK, Rabaey J (2003), A study of low level vibrations as a power source for wireless sensor nodes. 26:1131–1144 Roundy S, Wright PK, Rabaey J (2003), A study of low level vibrations as a power source for wireless sensor nodes. 26:1131–1144
27.
go back to reference Marzencki M et al (2005) A MEMS piezoelectric vibration energy harvesting device. PowerMEMS 45–48 Marzencki M et al (2005) A MEMS piezoelectric vibration energy harvesting device. PowerMEMS 45–48
28.
go back to reference Jeong SJ, Kim MS, Song JS, Lee HK (2008) Two-layered piezoelectric bender device for micro-power generator. Sens Actuat A Phys. 148(1):158–167CrossRef Jeong SJ, Kim MS, Song JS, Lee HK (2008) Two-layered piezoelectric bender device for micro-power generator. Sens Actuat A Phys. 148(1):158–167CrossRef
29.
go back to reference Gu L (2011) Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation. Microelectron J 42(2):277–282CrossRef Gu L (2011) Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation. Microelectron J 42(2):277–282CrossRef
30.
go back to reference Kim I, Joo H, Jeong S, Kim M, Song J (2010) Micro power generation of PMN-PZT triple morph cantilever for electric harvesting devices. Phys Status Solidi Curr Top Solid State Phys 7(9):2331–2335 Kim I, Joo H, Jeong S, Kim M, Song J (2010) Micro power generation of PMN-PZT triple morph cantilever for electric harvesting devices. Phys Status Solidi Curr Top Solid State Phys 7(9):2331–2335
31.
go back to reference Eduard Noel du Toit Modeling and design of MEMS piezoelectric vibration energy harvester Eduard Noel du Toit Modeling and design of MEMS piezoelectric vibration energy harvester
32.
go back to reference Duffy M, Carroll D (2004) Electromagnetic generators for power harvesting, pp 2075–2081 Duffy M, Carroll D (2004) Electromagnetic generators for power harvesting, pp 2075–2081
33.
go back to reference Williams CB, Yates RB (1996) s S oRs actuators analysis of a micro-electric generator for microsystems dF-1 z(O ii, vol 52, pp 8–11 Williams CB, Yates RB (1996) s S oRs actuators analysis of a micro-electric generator for microsystems dF-1 z(O ii, vol 52, pp 8–11
34.
go back to reference Optical harmonic upconversion for generation in bidirectional broadba 33(22):1883–1884 Optical harmonic upconversion for generation in bidirectional broadba 33(22):1883–1884
35.
go back to reference Kulah H, Najafi K An electromagnetic micro power generator. 237–240 Kulah H, Najafi K An electromagnetic micro power generator. 237–240
36.
go back to reference Gorlatova M, Sarik J, Grebla G, Cong M, Kymissis I, Zussman G (2014) Movers and shakers : kinetic energy harvesting for the internet of things Gorlatova M, Sarik J, Grebla G, Cong M, Kymissis I, Zussman G (2014) Movers and shakers : kinetic energy harvesting for the internet of things
37.
go back to reference Fondevilla N, Morante JR, Esteve J (2005) Design of electromagnetic inertial generators for energy scavenging applications Fondevilla N, Morante JR, Esteve J (2005) Design of electromagnetic inertial generators for energy scavenging applications
38.
go back to reference Scherrer S, Plumlee DG, Moll AJ (2005) Energy scavenging device in LTCC materials. In: 2005 IEEE work. microelectron. Electron devices, 2005. WMED’05, pp 77–78 Scherrer S, Plumlee DG, Moll AJ (2005) Energy scavenging device in LTCC materials. In: 2005 IEEE work. microelectron. Electron devices, 2005. WMED’05, pp 77–78
39.
go back to reference Beeby SP et al Micromachined silicon generator for harvesting power from vibrations. pp 2–5 Beeby SP et al Micromachined silicon generator for harvesting power from vibrations. pp 2–5
40.
go back to reference Yan J, Montero H, Akhnoukh JM, De Vreede A, Burghartz LC (2005) An integration scheme for RF power harvesting. Proc STW Ann (1):64–66 Yan J, Montero H, Akhnoukh JM, De Vreede A, Burghartz LC (2005) An integration scheme for RF power harvesting. Proc STW Ann (1):64–66
41.
go back to reference Amirtharajah R, Wenck J, Collier J, Siebert J, Zhou B (2006) Circuits for energy harvesting sensor signal processing. Proc Des Autom Conf 639–644 Amirtharajah R, Wenck J, Collier J, Siebert J, Zhou B (2006) Circuits for energy harvesting sensor signal processing. Proc Des Autom Conf 639–644
42.
go back to reference Torah R, Beeby SP, Tudor MJ, O’Donnell T, Roy S (2006) Development of a cantilever beam generator employing vibration energy harvestin. Energy 1:4–7 Torah R, Beeby SP, Tudor MJ, O’Donnell T, Roy S (2006) Development of a cantilever beam generator employing vibration energy harvestin. Energy 1:4–7
43.
go back to reference El-hami M et al (2001) Design and fabrication of a new vibration-based electromechanical power generator. Sens Actuat A Phys 92(1–3):335–342CrossRef El-hami M et al (2001) Design and fabrication of a new vibration-based electromechanical power generator. Sens Actuat A Phys 92(1–3):335–342CrossRef
44.
go back to reference Yang B, Lee C (2010) Non-resonant electromagnetic wideband energy harvesting mechanism for low frequency vibrations. 961–966 Yang B, Lee C (2010) Non-resonant electromagnetic wideband energy harvesting mechanism for low frequency vibrations. 961–966
45.
go back to reference Xue Z, Li L, Ichchou MN, Li C (2017) Hysteresis and the nonlinear equivalent piezoelectric coefficient of MFCs for actuation. Chinese J Aeronaut 30(1):88–98CrossRef Xue Z, Li L, Ichchou MN, Li C (2017) Hysteresis and the nonlinear equivalent piezoelectric coefficient of MFCs for actuation. Chinese J Aeronaut 30(1):88–98CrossRef
46.
go back to reference Glynne-Jones P, Tudor MJ, Beeby SP, White NM (2004) An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens Actuat A Phys 110(1–3):344–349CrossRef Glynne-Jones P, Tudor MJ, Beeby SP, White NM (2004) An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens Actuat A Phys 110(1–3):344–349CrossRef
47.
go back to reference Generation VP, Amirtharajah R, Chandrakasan AP (1998) Self-powered signal processing using. IEEE J Solid-State Circ 33(5):687–695CrossRef Generation VP, Amirtharajah R, Chandrakasan AP (1998) Self-powered signal processing using. IEEE J Solid-State Circ 33(5):687–695CrossRef
48.
go back to reference Ching NNH, Wong HY, Li WJ, Leong PHW, Wen Z (2002) A laser-micromachined multi-modal resonating power transducer for wireless sensing systems. Sens Actuat A Phys 97–98:685–690CrossRef Ching NNH, Wong HY, Li WJ, Leong PHW, Wen Z (2002) A laser-micromachined multi-modal resonating power transducer for wireless sensing systems. Sens Actuat A Phys 97–98:685–690CrossRef
49.
50.
go back to reference Sharma K, Kohli P, Pikhan S Footstep power generation using piezo-electric transducers Sharma K, Kohli P, Pikhan S Footstep power generation using piezo-electric transducers
51.
go back to reference Zhao HD, Ling JM, Fu PC (2013) A review of harvesting green energy from road. Adv Mater Res 723:559–566CrossRef Zhao HD, Ling JM, Fu PC (2013) A review of harvesting green energy from road. Adv Mater Res 723:559–566CrossRef
52.
go back to reference Ahmad S, Abdul Mujeebu M, Farooqi MA (2019) Energy harvesting from pavements and roadways: a comprehensive review of technologies, materials, and challenges. Int J Energy Res 43(6):1974–2015 Ahmad S, Abdul Mujeebu M, Farooqi MA (2019) Energy harvesting from pavements and roadways: a comprehensive review of technologies, materials, and challenges. Int J Energy Res 43(6):1974–2015
53.
go back to reference Nia EM, Zawawi NAWA, Singh BSM (2018) A review of walking energy harvesting using piezoelectric materials. IOP Conf Ser Mater Sci Eng 291(1) Nia EM, Zawawi NAWA, Singh BSM (2018) A review of walking energy harvesting using piezoelectric materials. IOP Conf Ser Mater Sci Eng 291(1)
54.
go back to reference Triono AD et al (2018) Utilization of pedestrian movement on the sidewalk as a source of electric power for lighting using piezoelectric censors. IEEE Int Conf Intell Transp Eng ICITE 2018:241–246 Triono AD et al (2018) Utilization of pedestrian movement on the sidewalk as a source of electric power for lighting using piezoelectric censors. IEEE Int Conf Intell Transp Eng ICITE 2018:241–246
55.
go back to reference Williams CB, Yates RB (1996) s S oRs ACTUATORS Analysis of a micro-electric generator for microsystems dF-1 z (O ii, vol 52, pp 8–11 Williams CB, Yates RB (1996) s S oRs ACTUATORS Analysis of a micro-electric generator for microsystems dF-1 z (O ii, vol 52, pp 8–11
56.
go back to reference Staley ME, Flatau AB (2005) Potential of Terfenol-D and Galfenol, no May 2005, 2020 Staley ME, Flatau AB (2005) Potential of Terfenol-D and Galfenol, no May 2005, 2020
57.
go back to reference Roundy S, Wright PK, Pister KSJ (2002) Micro-electrostatic vibration-to-electricity converters. ASME Int Mech Eng Congr Expo Proc 487–496 Roundy S, Wright PK, Pister KSJ (2002) Micro-electrostatic vibration-to-electricity converters. ASME Int Mech Eng Congr Expo Proc 487–496
59.
go back to reference Yildiz F, Zhu J, Pecen R, Guo L (2007) Energy scavenging for wireless sensor nodes with a focus on rotation to electricity conversion. ASEE Annu Conf Expo Conf Proc Yildiz F, Zhu J, Pecen R, Guo L (2007) Energy scavenging for wireless sensor nodes with a focus on rotation to electricity conversion. ASEE Annu Conf Expo Conf Proc
60.
go back to reference Meninger S, Mur-miranda JO, Amirtharajah R, Chandrakasan AP, Lang JH (2001) Vibration-to-electric energy conversion 9(1):64–76 Meninger S, Mur-miranda JO, Amirtharajah R, Chandrakasan AP, Lang JH (2001) Vibration-to-electric energy conversion 9(1):64–76
61.
go back to reference Wong M, Rufer L (2005) Montreux, Switzerland, 01–03 June 2005 Dynamic simulation of an implemented electrostatic power micro-generator, pp 1–3 Wong M, Rufer L (2005) Montreux, Switzerland, 01–03 June 2005 Dynamic simulation of an implemented electrostatic power micro-generator, pp 1–3
62.
go back to reference Despesse G et al (2012) Fabrication and characterization of high damping electrostatic micro devices for vibration energy scavenging to cite this version : HAL Id : hal-00748983 Despesse G et al (2012) Fabrication and characterization of high damping electrostatic micro devices for vibration energy scavenging to cite this version : HAL Id : hal-00748983
63.
go back to reference Tashiro R, Kabei N, Katayama K, Tsuboi F, Tsuchiya K (2002) Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J Artif Organs 5(4):239–245CrossRef Tashiro R, Kabei N, Katayama K, Tsuboi F, Tsuchiya K (2002) Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J Artif Organs 5(4):239–245CrossRef
64.
go back to reference Mizuno M, Chetwynd DG (2003) Investigation of a resonance microgenerator Mizuno M, Chetwynd DG (2003) Investigation of a resonance microgenerator
65.
go back to reference Kubo M, Matsuda H, Tanaka M, Kimura Y, Okuda H, Higashino M, Tani T (1986) NII-electronic library service. Chem Pharm Bull 34(1):430–433 Kubo M, Matsuda H, Tanaka M, Kimura Y, Okuda H, Higashino M, Tani T (1986) NII-electronic library service. Chem Pharm Bull 34(1):430–433
66.
go back to reference Miyazaki M et al (2003) Electric-energy generation using variable-capacitive resonator for power-free LSI: efficiency analysis and fundamental experiment. Proc Int Symp Low Power Electron Des 193–198 Miyazaki M et al (2003) Electric-energy generation using variable-capacitive resonator for power-free LSI: efficiency analysis and fundamental experiment. Proc Int Symp Low Power Electron Des 193–198
67.
go back to reference Foot step power generation using piezoelectric material. 4(10):2503–2507 Foot step power generation using piezoelectric material. 4(10):2503–2507
68.
go back to reference Duarte F, Ferreira A (2016) Energy harvesting on road pavements: state of the art. Proc Inst Civ Eng Energy 169(2):79–90 Duarte F, Ferreira A (2016) Energy harvesting on road pavements: state of the art. Proc Inst Civ Eng Energy 169(2):79–90
Metadata
Title
Crowd Management for Power Generation: A Critical Analysis on the Existing Materials and Methods. (Structural Modal Analysis)
Authors
Abdulaziz O. Alnuman
Muhammad A. Khan
Andrew Starr
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9893-7_2

Premium Partners