Skip to main content
Top

2014 | OriginalPaper | Chapter

7. Current Applications of Biotextiles and Future Trends

Authors : Chirag R. Gajjar, Martin W. King

Published in: Resorbable Fiber-Forming Polymers for Biotextile Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biotextiles have been used for permanent as well as temporary applications. This chapter reviews the applications of biotextile medical devices along with their structures. Future trends for biotextile devices are also discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Hayashi, Biodegradable polymers for biomedical uses. Prog. Polym. Sci. 19(4), 663–702 (1994)CrossRef T. Hayashi, Biodegradable polymers for biomedical uses. Prog. Polym. Sci. 19(4), 663–702 (1994)CrossRef
2.
go back to reference J. Rose, High strength bioreabsorbable co-polymers, US 20080045627 A12008 J. Rose, High strength bioreabsorbable co-polymers, US 20080045627 A12008
3.
go back to reference J. Rose, High strength bioresorbables containing poly-glycolic acid, 745567425-Nov-2008 (2008) J. Rose, High strength bioresorbables containing poly-glycolic acid, 745567425-Nov-2008 (2008)
4.
go back to reference I. Noda, Fibers, nonwoven fabrics and absorbent articles comprising a biodegradable polyhydroxyalkanoate comprising 3-hydroxyalkanoate and 3-hydroxyhexanoate, US614394711-Jan-2000 (2000) I. Noda, Fibers, nonwoven fabrics and absorbent articles comprising a biodegradable polyhydroxyalkanoate comprising 3-hydroxyalkanoate and 3-hydroxyhexanoate, US614394711-Jan-2000 (2000)
5.
go back to reference S.F. Williams, Bioabsorbable, biocompatible polymers for tissue engineering, US651451504-Feb-2003 (2003) S.F. Williams, Bioabsorbable, biocompatible polymers for tissue engineering, US651451504-Feb-2003 (2003)
6.
go back to reference S.F. Williams, D.P. Martin, T. Gerngross, D.M. Horowitz, Polyhydroxyalkanoates for in vivo applications, US7906135 S.F. Williams, D.P. Martin, T. Gerngross, D.M. Horowitz, Polyhydroxyalkanoates for in vivo applications, US7906135
7.
go back to reference S.F. Williams, D.P. Martin, F.A. Skraly, Medical devices and applications of polyhydroxyalkanoate polymers, US7553923 S.F. Williams, D.P. Martin, F.A. Skraly, Medical devices and applications of polyhydroxyalkanoate polymers, US7553923
8.
go back to reference D.P. Martin, S. Rizk, A. Ahuja, S.F. Williams, Polyhydroxyalkanoate medical textiles and fibers, US8034270 D.P. Martin, S. Rizk, A. Ahuja, S.F. Williams, Polyhydroxyalkanoate medical textiles and fibers, US8034270
9.
go back to reference G. Terenghi, P.-N. Mohanna, D.P. Martin, Polyhydroxyalkanoate nerve regeneration devices, US 2009/0209983 A1 G. Terenghi, P.-N. Mohanna, D.P. Martin, Polyhydroxyalkanoate nerve regeneration devices, US 2009/0209983 A1
10.
go back to reference S. Rizk, Non-curling polyhydroxyalkanoate sutures, US8084125 S. Rizk, Non-curling polyhydroxyalkanoate sutures, US8084125
11.
go back to reference U. Gohs, B. Taendler, R. Vogel, D. Voigt, Nucleated poly-3-hydroxybutyric acid fiber for use in non-wovens, e.g. for medical implants, made from a mixture of high- and low-molecular wt. poly-acid and crystallised in the alpha and beta modification, DE102007000694-A105-Mar-2009 (2009) U. Gohs, B. Taendler, R. Vogel, D. Voigt, Nucleated poly-3-hydroxybutyric acid fiber for use in non-wovens, e.g. for medical implants, made from a mixture of high- and low-molecular wt. poly-acid and crystallised in the alpha and beta modification, DE102007000694-A105-Mar-2009 (2009)
12.
go back to reference B. Gupta, N. Revagade, J. Hilborn, Poly(lactic acid) fiber: an overview. Prog. Polym. Sci. 32(4), 455–482 (2007)CrossRef B. Gupta, N. Revagade, J. Hilborn, Poly(lactic acid) fiber: an overview. Prog. Polym. Sci. 32(4), 455–482 (2007)CrossRef
13.
go back to reference M. Martina, D.W. Hutmacher, Biodegradable polymers applied in tissue engineering research: a review. Polym. Int. 56(2), 145–157 (2007)CrossRef M. Martina, D.W. Hutmacher, Biodegradable polymers applied in tissue engineering research: a review. Polym. Int. 56(2), 145–157 (2007)CrossRef
14.
go back to reference P.A. Gunatillake, R. Adhikari, Biodegradable synthetic polymers for tissue engineering, Eur. Cell Mater. 5, 1–16; discussion 16, (2003) P.A. Gunatillake, R. Adhikari, Biodegradable synthetic polymers for tissue engineering, Eur. Cell Mater. 5, 1–16; discussion 16, (2003)
15.
go back to reference H. Magnusson, T. Mathisen, Mesh implant with an interlocking knitted structure, 801684113-Sep-2011 (2011) H. Magnusson, T. Mathisen, Mesh implant with an interlocking knitted structure, 801684113-Sep-2011 (2011)
16.
go back to reference M. Therin, A. Meneghin, J.-L. Tayot, S. Montanari, Oxydized cellulose prosthesis, US 20070032805 A12007 M. Therin, A. Meneghin, J.-L. Tayot, S. Montanari, Oxydized cellulose prosthesis, US 20070032805 A12007
17.
go back to reference M. Zilberman, R.C. Eberhart, Drug-eluting bioresorbable stents for various applications. Annu. Rev. Biomed. Eng. 8(1), 153–180 (2006)CrossRef M. Zilberman, R.C. Eberhart, Drug-eluting bioresorbable stents for various applications. Annu. Rev. Biomed. Eng. 8(1), 153–180 (2006)CrossRef
18.
go back to reference C. Di Mario, H. Griffiths, O. Goktekin, N. Peeters, J. Verbist, M. Bosiers, K. Deloose, B. Heublein, R. Rohde, V. Kasese, C. Ilsley, R. Erbel, Drug-eluting bioabsorbable magnesium stent. J. Interv. Cardiol. 17(6), 391–395 (2004)CrossRef C. Di Mario, H. Griffiths, O. Goktekin, N. Peeters, J. Verbist, M. Bosiers, K. Deloose, B. Heublein, R. Rohde, V. Kasese, C. Ilsley, R. Erbel, Drug-eluting bioabsorbable magnesium stent. J. Interv. Cardiol. 17(6), 391–395 (2004)CrossRef
19.
go back to reference R.S. Schwartz, E.R. Edelman, A. Carter, N. Chronos, C. Rogers, K.A. Robinson, R. Waksman, J. Weinberger, R.L. Wilensky, D.N. Jensen, B.D. Zuckerman, R. Virmani, Drug-eluting stents in preclinical studies recommended evaluation from a consensus group. Circulation 106(14), 1867–1873 (2002)CrossRef R.S. Schwartz, E.R. Edelman, A. Carter, N. Chronos, C. Rogers, K.A. Robinson, R. Waksman, J. Weinberger, R.L. Wilensky, D.N. Jensen, B.D. Zuckerman, R. Virmani, Drug-eluting stents in preclinical studies recommended evaluation from a consensus group. Circulation 106(14), 1867–1873 (2002)CrossRef
20.
go back to reference A.E. Deliaert, E. Van den Kerckhove, S. Tuinder, S. Fieuws, J.H. Sawor, M.A. Meesters-Caberg, R.R. van der Hulst, The effect of triclosan-coated sutures in wound healing. A double blind randomised prospective pilot study. J. Plast., Reconstr. Aesthetic Surg. 62(6), 771–773 (2009)CrossRef A.E. Deliaert, E. Van den Kerckhove, S. Tuinder, S. Fieuws, J.H. Sawor, M.A. Meesters-Caberg, R.R. van der Hulst, The effect of triclosan-coated sutures in wound healing. A double blind randomised prospective pilot study. J. Plast., Reconstr. Aesthetic Surg. 62(6), 771–773 (2009)CrossRef
21.
go back to reference B. Pasternak, M. Rehn, L. Andersen, M. Ågren, A.-M. Heegaard, P. Tengvall, P. Aspenberg, Doxycycline-coated sutures improve mechanical strength of intestinal anastomoses. Int. J. Colorectal Dis. 23(3), 271–276 (2008)CrossRef B. Pasternak, M. Rehn, L. Andersen, M. Ågren, A.-M. Heegaard, P. Tengvall, P. Aspenberg, Doxycycline-coated sutures improve mechanical strength of intestinal anastomoses. Int. J. Colorectal Dis. 23(3), 271–276 (2008)CrossRef
22.
go back to reference R. Zurita, J. Puiggalí, A. Rodríguez-Galán, Triclosan release from coated polyglycolide threads. Macromol. Biosci. 6(1), 58–69 (2005)CrossRef R. Zurita, J. Puiggalí, A. Rodríguez-Galán, Triclosan release from coated polyglycolide threads. Macromol. Biosci. 6(1), 58–69 (2005)CrossRef
23.
go back to reference M.W. King, S. Chung, Medical fibers and biotextiles, in Biomaterials Science: An Introduction to Materials in Medicine, 3rd edn., ed. by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons (Academic Press, Waltham, MA, 2012), pp. 301–320 M.W. King, S. Chung, Medical fibers and biotextiles, in Biomaterials Science: An Introduction to Materials in Medicine, 3rd edn., ed. by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons (Academic Press, Waltham, MA, 2012), pp. 301–320
24.
go back to reference B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers. J. Polym. Sci., Part B: Polym. Phys. 49(12), 832–864 (2011)CrossRef B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers. J. Polym. Sci., Part B: Polym. Phys. 49(12), 832–864 (2011)CrossRef
25.
go back to reference A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573), 1673–1676 (2002)CrossRef A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573), 1673–1676 (2002)CrossRef
26.
go back to reference O. Bretcanu, E. Verné, L. Borello, A. Boccaccini, Bioactivity of degradable polymer sutures coated with bioactive glass. J. Mater. Sci. Mater. Med. 15(8), 893–899 (2004)CrossRef O. Bretcanu, E. Verné, L. Borello, A. Boccaccini, Bioactivity of degradable polymer sutures coated with bioactive glass. J. Mater. Sci. Mater. Med. 15(8), 893–899 (2004)CrossRef
27.
go back to reference S. Chung, M.P. Gamcsik, M.W. King, Novel scaffold design with multi-grooved PLA fibers. Biomed. Mater. 6(4), 045001 (2011)CrossRef S. Chung, M.P. Gamcsik, M.W. King, Novel scaffold design with multi-grooved PLA fibers. Biomed. Mater. 6(4), 045001 (2011)CrossRef
28.
go back to reference S.W. Cranford, J. de Boer, C. van Blitterswijk, M.J. Buehler, Materiomics: an-omics approach to biomaterials research. Adv. Mater. 25(6), 802–824 (2013)CrossRef S.W. Cranford, J. de Boer, C. van Blitterswijk, M.J. Buehler, Materiomics: an-omics approach to biomaterials research. Adv. Mater. 25(6), 802–824 (2013)CrossRef
Metadata
Title
Current Applications of Biotextiles and Future Trends
Authors
Chirag R. Gajjar
Martin W. King
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-08305-6_7

Premium Partners