Skip to main content
Top
Published in: Health and Technology 4/2019

22-07-2019 | Review Paper

Current issues regarding artificial intelligence in cancer and health care. Implications for medical physicists and biomedical engineers

Authors: Loredana G. Marcu, Chris Boyd, Eva Bezak

Published in: Health and Technology | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The development of Artificial Intelligence (AI) in healthcare has been a long road with many significant obstacles that at the same time present opportunities for biomedical engineers and medical physicists to assume leadership roles in the implementation of AI in healthcare. International organizations like IOMP, IFMBE and IUPESM must take initiative in addressing the current challenges in AI, particularly in data science including: (1) Big data collection and registries; (2) Data Privacy; (3) Data Input and Standardization of Reporting; (4) What knowledge/data should be recorded and used; (5) Algorithms; (6) Implementation, validation, and quality assurance; (7) Rapidly growing volumes of data; (8) Ethical considerations and many others. This article presents an overview of the current status of AI in cancer and health care and highlights the opportunities it presents for new professional roles of biomedical engineers and medical physicists.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference McCarthy J, et al. A proposal for the Dartmouth summer research project on artificial intelligence. Dartmouth College: Hanover; 1955. p. 23. McCarthy J, et al. A proposal for the Dartmouth summer research project on artificial intelligence. Dartmouth College: Hanover; 1955. p. 23.
2.
go back to reference Chollet F. Deep learning with python: Manning Publications; 2017. Chollet F. Deep learning with python: Manning Publications; 2017.
5.
go back to reference Reinsel D, et al. Data Age 2025: The digitization of the world from edge to core. , I.D. Corporation, Editor. 2018. p. 28. Reinsel D, et al. Data Age 2025: The digitization of the world from edge to core. , I.D. Corporation, Editor. 2018. p. 28.
6.
go back to reference Asan O, et al. How physician electronic health record screen sharing affects patient and doctor non-verbal communication in primary care. Patient Educ Couns. 2015;98(3):310–6.MathSciNetCrossRef Asan O, et al. How physician electronic health record screen sharing affects patient and doctor non-verbal communication in primary care. Patient Educ Couns. 2015;98(3):310–6.MathSciNetCrossRef
7.
go back to reference Nguyen L, Bellucci E, Nguyen LT. Electronic health records implementation: an evaluation of information system impact and contingency factors. Int J Med Inform. 2014;83(11):779–96.CrossRef Nguyen L, Bellucci E, Nguyen LT. Electronic health records implementation: an evaluation of information system impact and contingency factors. Int J Med Inform. 2014;83(11):779–96.CrossRef
8.
go back to reference Payne TH. The electronic health record as a catalyst for quality improvement in patient care. Heart. 2016;102(22):1782–7.CrossRef Payne TH. The electronic health record as a catalyst for quality improvement in patient care. Heart. 2016;102(22):1782–7.CrossRef
9.
go back to reference Rashid M, et al. Optimizing drug combinations against multiple myeloma using a quadratic phenotypic optimization platform (QPOP). Sci Transl Med. 2018;10(453). Rashid M, et al. Optimizing drug combinations against multiple myeloma using a quadratic phenotypic optimization platform (QPOP). Sci Transl Med. 2018;10(453).
10.
go back to reference Mesko B. The role of artificial intelligence in precision medicine. Expert Review of Precision Medicine and Drug Development. 2017;2(5):239–41.CrossRef Mesko B. The role of artificial intelligence in precision medicine. Expert Review of Precision Medicine and Drug Development. 2017;2(5):239–41.CrossRef
12.
go back to reference Ting DSW, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–23.CrossRef Ting DSW, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–23.CrossRef
13.
go back to reference Borras JM, et al. The optimal utilization proportion of external beam radiotherapy in European countries: an ESTRO-HERO analysis. Radiother Oncol. 2015;116(1):38–44.CrossRef Borras JM, et al. The optimal utilization proportion of external beam radiotherapy in European countries: an ESTRO-HERO analysis. Radiother Oncol. 2015;116(1):38–44.CrossRef
14.
go back to reference Bibault JE, et al. Labeling for big data in radiation oncology: the radiation oncology structures ontology. PLoS One. 2018;13(1):e0191263.CrossRef Bibault JE, et al. Labeling for big data in radiation oncology: the radiation oncology structures ontology. PLoS One. 2018;13(1):e0191263.CrossRef
15.
go back to reference Tseng HH, et al. The role of machine learning in knowledge-based response-adapted radiotherapy. Front Oncol. 2018;8:266.CrossRef Tseng HH, et al. The role of machine learning in knowledge-based response-adapted radiotherapy. Front Oncol. 2018;8:266.CrossRef
16.
go back to reference Sanders JC, Showalter TN. How big data, comparative effectiveness research, and rapid-learning health-care systems can transform patient Care in Radiation Oncology. Front Oncol. 2018;8:155.CrossRef Sanders JC, Showalter TN. How big data, comparative effectiveness research, and rapid-learning health-care systems can transform patient Care in Radiation Oncology. Front Oncol. 2018;8:155.CrossRef
17.
go back to reference Guo Z, et al. Radiogenomics helps to achieve personalized therapy by evaluating patient responses to radiation treatment. Carcinogenesis. 2015;36(3):307–17.CrossRef Guo Z, et al. Radiogenomics helps to achieve personalized therapy by evaluating patient responses to radiation treatment. Carcinogenesis. 2015;36(3):307–17.CrossRef
18.
go back to reference Lustberg T, et al. Big data in radiation therapy: challenges and opportunities. Br J Radiol. 2017;90(1069):20160689.CrossRef Lustberg T, et al. Big data in radiation therapy: challenges and opportunities. Br J Radiol. 2017;90(1069):20160689.CrossRef
19.
go back to reference Lambin P, et al. Decision support systems for personalized and participative radiation oncology. Adv Drug Deliv Rev. 2017;109:131–53.CrossRef Lambin P, et al. Decision support systems for personalized and participative radiation oncology. Adv Drug Deliv Rev. 2017;109:131–53.CrossRef
20.
go back to reference Morin O, et al. A deep look into the future of quantitative imaging in oncology: a statement of working principles and proposal for change. Int J Radiat Oncol Biol Phys. 2018;102(4):1074–82.CrossRef Morin O, et al. A deep look into the future of quantitative imaging in oncology: a statement of working principles and proposal for change. Int J Radiat Oncol Biol Phys. 2018;102(4):1074–82.CrossRef
21.
go back to reference Sala E, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol. 2017;72(1):3–10.CrossRef Sala E, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol. 2017;72(1):3–10.CrossRef
22.
go back to reference van der Heide UA, Thorwarth D. Quantitative imaging for radiation oncology. Int J Radiat Oncol Biol Phys. 2018;102(4):683–6.CrossRef van der Heide UA, Thorwarth D. Quantitative imaging for radiation oncology. Int J Radiat Oncol Biol Phys. 2018;102(4):683–6.CrossRef
23.
go back to reference Deist TM, et al. Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT. Clin Transl Radiat Oncol. 2017;4:24–31.CrossRef Deist TM, et al. Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT. Clin Transl Radiat Oncol. 2017;4:24–31.CrossRef
24.
go back to reference Boldrini L, et al. Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Radiol Med. 2018. Boldrini L, et al. Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Radiol Med. 2018.
25.
go back to reference Fave X, et al. Using pretreatment Radiomics and Delta-Radiomics features to predict non–small cell lung Cancer patient outcomes. International Journal of Radiation Oncology*Biology*Physics. 2017;98(1):249.CrossRef Fave X, et al. Using pretreatment Radiomics and Delta-Radiomics features to predict non–small cell lung Cancer patient outcomes. International Journal of Radiation Oncology*Biology*Physics. 2017;98(1):249.CrossRef
26.
go back to reference Rosenstein BS, et al. Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol Biol Phys. 2014;89(4):709–13.CrossRef Rosenstein BS, et al. Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol Biol Phys. 2014;89(4):709–13.CrossRef
28.
go back to reference Matuszak MM, et al. Performance/outcomes data and physician process challenges for practical big data efforts in radiation oncology. Med Phys. 2018;45(10):e811–9.CrossRef Matuszak MM, et al. Performance/outcomes data and physician process challenges for practical big data efforts in radiation oncology. Med Phys. 2018;45(10):e811–9.CrossRef
29.
go back to reference Abouelmehdi K, Beni-Hessane A, Khaloufi H. Big healthcare data: preserving security and privacy. Journal of Big Data. 2018;5(1). Abouelmehdi K, Beni-Hessane A, Khaloufi H. Big healthcare data: preserving security and privacy. Journal of Big Data. 2018;5(1).
30.
go back to reference Famili A, et al. Data preprocessing and intelligent data analysis. Intelligent Data Analysis. 1997;1(1):3–23.CrossRef Famili A, et al. Data preprocessing and intelligent data analysis. Intelligent Data Analysis. 1997;1(1):3–23.CrossRef
31.
go back to reference Zimmerman SL, Kim W, Boonn WW. Informatics in radiology: automated structured reporting of imaging findings using the AIM standard and XML. Radiographics. 2011;31(3):881–7.CrossRef Zimmerman SL, Kim W, Boonn WW. Informatics in radiology: automated structured reporting of imaging findings using the AIM standard and XML. Radiographics. 2011;31(3):881–7.CrossRef
32.
go back to reference Bishop C. Pattern recognition and machine learning, vol. 738. New York: Springer; 2006.MATH Bishop C. Pattern recognition and machine learning, vol. 738. New York: Springer; 2006.MATH
33.
go back to reference Erickson BJ, et al. Machine learning for medical imaging. Radiographics. 2017;37(2):505–15.CrossRef Erickson BJ, et al. Machine learning for medical imaging. Radiographics. 2017;37(2):505–15.CrossRef
34.
go back to reference Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018;2(1):35.CrossRef Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018;2(1):35.CrossRef
36.
go back to reference Gilpin LH, et al. Explaining explanations: an overview of interpretability of machine learning. 2018: p. 80–89. Gilpin LH, et al. Explaining explanations: an overview of interpretability of machine learning. 2018: p. 80–89.
39.
go back to reference Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on artificial intelligence - volume 2. Montreal: Morgan Kaufmann Publishers Inc; 1995. p. 1137–43. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on artificial intelligence - volume 2. Montreal: Morgan Kaufmann Publishers Inc; 1995. p. 1137–43.
40.
go back to reference Powers D. Evaluation: from precision, recall and F-measure to ROC, Informedness, Markedness & Correlation. J Mach Learn Technol. 2011;2:1. Powers D. Evaluation: from precision, recall and F-measure to ROC, Informedness, Markedness & Correlation. J Mach Learn Technol. 2011;2:1.
41.
go back to reference Paulson SS, Scruth E. Legal and ethical concerns of big data: predictive analytics. Clin Nurse Spec. 2017;31(5):237–9.CrossRef Paulson SS, Scruth E. Legal and ethical concerns of big data: predictive analytics. Clin Nurse Spec. 2017;31(5):237–9.CrossRef
42.
go back to reference Maddox TM, Rumsfeld JS, Payne PRO. Questions for artificial intelligence in health care. JAMA. 2018. Maddox TM, Rumsfeld JS, Payne PRO. Questions for artificial intelligence in health care. JAMA. 2018.
Metadata
Title
Current issues regarding artificial intelligence in cancer and health care. Implications for medical physicists and biomedical engineers
Authors
Loredana G. Marcu
Chris Boyd
Eva Bezak
Publication date
22-07-2019
Publisher
Springer Berlin Heidelberg
Published in
Health and Technology / Issue 4/2019
Print ISSN: 2190-7188
Electronic ISSN: 2190-7196
DOI
https://doi.org/10.1007/s12553-019-00348-x

Other articles of this Issue 4/2019

Health and Technology 4/2019 Go to the issue

Premium Partner