Skip to main content
Top
Published in: Health and Technology 6/2021

10-10-2021 | Review Paper

Current limitations to identify covid-19 using artificial intelligence with chest x-ray imaging (part ii). The shortcut learning problem

Published in: Health and Technology | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since the outbreak of the COVID-19 pandemic, computer vision researchers have been working on automatic identification of this disease using radiological images. The results achieved by automatic classification methods far exceed those of human specialists, with sensitivity as high as 100% being reported. However, prestigious radiology societies have stated that the use of this type of imaging alone is not recommended as a diagnostic method. According to some experts the patterns presented in these images are unspecific and subtle, overlapping with other viral pneumonias. This report seeks to evaluate the analysis the robustness and generalizability of different approaches using artificial intelligence, deep learning and computer vision to identify COVID-19 using chest X-rays images. We also seek to alert researchers and reviewers to the issue of “shortcut learning”. Recommendations are presented to identify whether COVID-19 automatic classification models are being affected by shortcut learning. Firstly, papers using explainable artificial intelligence methods are reviewed. The results of applying external validation sets are evaluated to determine the generalizability of these methods. Finally, studies that apply traditional computer vision methods to perform the same task are considered. It is evident that using the whole chest X-Ray image or the bounding box of the lungs, the image regions that contribute most to the classification appear outside of the lung region, something that is not likely possible. In addition, although the investigations that evaluated their models on data sets external to the training set, the effectiveness of these models decreased significantly, it may provide a more realistic representation as how the model will perform in the clinic. The results indicate that, so far, the existing models often involve shortcut learning, which makes their use less appropriate in the clinical setting.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Ai T, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020;296(2):E32–40.CrossRef Ai T, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020;296(2):E32–40.CrossRef
5.
17.
go back to reference Yoon SH, et al. Chest radiographic and CT findings of the 2019 novel coronavirus disease (COVID-19): analysis of nine patients treated in Korea. Korean J Radiol. 2020;21(4):494–500.CrossRef Yoon SH, et al. Chest radiographic and CT findings of the 2019 novel coronavirus disease (COVID-19): analysis of nine patients treated in Korea. Korean J Radiol. 2020;21(4):494–500.CrossRef
19.
go back to reference Castiglioni I, et al. “Artificial intelligence applied on chest X-ray can aid in the diagnosis of COVID-19 infection: a first experience from Lombardy, Italy,”. medRxiv 2020. Castiglioni I, et al. “Artificial intelligence applied on chest X-ray can aid in the diagnosis of COVID-19 infection: a first experience from Lombardy, Italy,”. medRxiv 2020.
25.
go back to reference Ilyas M, Rehman H, Nait-ali A. “Detection of Covid-19 From Chest X-ray Images Using Artificial Intelligence: An Early Review”. ArXiv Prepr. ArXiv200405436 2020. Ilyas M, Rehman H, Nait-ali A. “Detection of Covid-19 From Chest X-ray Images Using Artificial Intelligence: An Early Review”. ArXiv Prepr. ArXiv200405436 2020.
26.
go back to reference Nguyen TT. “Artificial intelligence in the battle against coronavirus (COVID-19): a survey and future research directions”. Prepr 10 2020. Nguyen TT. “Artificial intelligence in the battle against coronavirus (COVID-19): a survey and future research directions”. Prepr 10 2020.
30.
31.
go back to reference Shoeibi A, et al. “Automated Detection and Forecasting of COVID-19 using Deep Learning Techniques: A Review”. ArXiv200710785 Cs Eess 2020. Accessed: Aug. 14, 2020. [Online]. Available: http://arxiv.org/abs/2007.10785 Shoeibi A, et al. “Automated Detection and Forecasting of COVID-19 using Deep Learning Techniques: A Review”. ArXiv200710785 Cs Eess 2020. Accessed: Aug. 14, 2020. [Online]. Available: http://​arxiv.​org/​abs/​2007.​10785
39.
go back to reference Kim P. “Convolutional Neural Network”, in MATLAB Deep Learning. Berkeley, CA: Apress; 2017. p. 121–47.CrossRef Kim P. “Convolutional Neural Network”, in MATLAB Deep Learning. Berkeley, CA: Apress; 2017. p. 121–47.CrossRef
40.
go back to reference Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning, vol. 1. MIT press Cambridge 2016. Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning, vol. 1. MIT press Cambridge 2016.
49.
go back to reference Yao L, Prosky J, Covington B, Lyman K. “A Strong Baseline for Domain Adaptation and Generalization in Medical Imaging”. ArXiv190401638 Cs Eess Stat 2019. Accessed: Aug. 26, 2020. [Online]. Available: http://arxiv.org/abs/1904.01638 Yao L, Prosky J, Covington B, Lyman K. “A Strong Baseline for Domain Adaptation and Generalization in Medical Imaging”. ArXiv190401638 Cs Eess Stat 2019. Accessed: Aug. 26, 2020. [Online]. Available: http://​arxiv.​org/​abs/​1904.​01638
53.
go back to reference Cohen JP, Morrison P, Dao L, Roth K, Duong T, Ghassemi M. “COVID-19 Image Data Collection: Prospective Predictions are the Future”. MELBA 2020;18272. Cohen JP, Morrison P, Dao L, Roth K, Duong T, Ghassemi M. “COVID-19 Image Data Collection: Prospective Predictions are the Future”. MELBA 2020;18272.
55.
go back to reference Garcia Santa Cruz B, Sölter J, Nicolas Bossa M, Dominik Husch A. “On the Composition and Limitations of Publicly Available COVID-19 X-Ray Imaging Datasets”. ArXiv200811572 Cs Eess 2020. Accessed: Sep. 21, 2020. [Online]. Available: http://arxiv.org/abs/2008.11572. Garcia Santa Cruz B, Sölter J, Nicolas Bossa M, Dominik Husch A. “On the Composition and Limitations of Publicly Available COVID-19 X-Ray Imaging Datasets”. ArXiv200811572 Cs Eess 2020. Accessed: Sep. 21, 2020. [Online]. Available: http://​arxiv.​org/​abs/​2008.​11572.
57.
58.
go back to reference Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. InProceedings of the IEEE international conference on computer vision 2017;618-626. https://doi.org/10.1109/ICCV.2017.74. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. InProceedings of the IEEE international conference on computer vision 2017;618-626. https://​doi.​org/​10.​1109/​ICCV.​2017.​74.
59.
go back to reference Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In2018 IEEE winter conference on applications of computer vision (WACV) 2018;839-847. IEEE. https://doi.org/10.1109/WACV.2018.00097. Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In2018 IEEE winter conference on applications of computer vision (WACV) 2018;839-847. IEEE.  https://​doi.​org/​10.​1109/​WACV.​2018.​00097.
62.
go back to reference Haghanifar A, Majdabadi MM, Choi Y, Deivalakshmi S, Ko S. “COVID-CXNet: Detecting COVID-19 in Frontal Chest X-ray Images using Deep Learning”. ArXiv200613807 Cs Eess 2020. Accessed: Feb. 28, 2021. [Online]. Available: http://arxiv.org/abs/2006.13807. Haghanifar A, Majdabadi MM, Choi Y, Deivalakshmi S, Ko S. “COVID-CXNet: Detecting COVID-19 in Frontal Chest X-ray Images using Deep Learning”. ArXiv200613807 Cs Eess 2020. Accessed: Feb. 28, 2021. [Online]. Available: http://​arxiv.​org/​abs/​2006.​13807.
63.
go back to reference Teixeira LO, Pereira RM, Bertolini D, Oliveira LS, Nanni L, Cavalcanti GD, Costa YM. “Impact of lung segmentation on the diagnosis and explanation of COVID-19 in chest X-ray images”. ArXiv200909780 Cs Eess 2020. Accessed: Sep. 29, 2020. [Online]. Available: http://arxiv.org/abs/2009.09780 Teixeira LO, Pereira RM, Bertolini D, Oliveira LS, Nanni L, Cavalcanti GD, Costa YM. “Impact of lung segmentation on the diagnosis and explanation of COVID-19 in chest X-ray images”. ArXiv200909780 Cs Eess 2020. Accessed: Sep. 29, 2020. [Online]. Available: http://​arxiv.​org/​abs/​2009.​09780
64.
go back to reference Karim MR, Döhmen T, Rebholz-Schuhmann D, Decker S, Cochez M, Beyan O. “DeepCOVIDExplainer: Explainable COVID-19 Diagnosis Based on Chest X-ray Images” 2020. Accessed: Jul. 10, 2020. [Online]. Available: https://arxiv.org/abs/2004.04582v3. Karim MR, Döhmen T, Rebholz-Schuhmann D, Decker S, Cochez M, Beyan O. “DeepCOVIDExplainer: Explainable COVID-19 Diagnosis Based on Chest X-ray Images” 2020. Accessed: Jul. 10, 2020. [Online]. Available: https://​arxiv.​org/​abs/​2004.​04582v3.
67.
go back to reference Chowdhury NK, Kabir MA, Rahman M, Rezoana N. “ECOVNet: An Ensemble of Deep Convolutional Neural Networks Based on EfficientNet to Detect COVID-19 From Chest X-rays”. ArXiv200911850 Cs Eess 2020. Accessed: Mar. 13, 2021. [Online]. Available: http://arxiv.org/abs/2009.11850. Chowdhury NK, Kabir MA, Rahman M, Rezoana N. “ECOVNet: An Ensemble of Deep Convolutional Neural Networks Based on EfficientNet to Detect COVID-19 From Chest X-rays”. ArXiv200911850 Cs Eess 2020. Accessed: Mar. 13, 2021. [Online]. Available: http://​arxiv.​org/​abs/​2009.​11850.
68.
go back to reference Chatterjee S, et al. “Exploration of Interpretability Techniques for Deep COVID-19 Classification using Chest X-ray Images”. ArXiv200602570 Cs Eess 2020. Accessed: Mar. 13, 2021. [Online]. Available: http://arxiv.org/abs/2006.02570. Chatterjee S, et al. “Exploration of Interpretability Techniques for Deep COVID-19 Classification using Chest X-ray Images”. ArXiv200602570 Cs Eess 2020. Accessed: Mar. 13, 2021. [Online]. Available: http://​arxiv.​org/​abs/​2006.​02570.
70.
go back to reference Siddhartha M, Santra A. “COVIDLite: A depth-wise separable deep neural network with white balance and CLAHE for detection of COVID-19,” ArXiv200613873 Cs Eess 2020. Accessed: Feb. 28, 2021. [Online]. Available: http://arxiv.org/abs/2006.13873. Siddhartha M, Santra A. “COVIDLite: A depth-wise separable deep neural network with white balance and CLAHE for detection of COVID-19,” ArXiv200613873 Cs Eess 2020. Accessed: Feb. 28, 2021. [Online]. Available: http://​arxiv.​org/​abs/​2006.​13873.
71.
73.
go back to reference Aviles-Rivero AI, Sellars P, Schönlieb CB, Papadakis N. “GraphXCOVID: Explainable Deep Graph Diffusion Pseudo-Labelling for Identifying COVID-19 on Chest X-rays”. ArXiv201000378 Cs Stat 2021. Accessed: Feb. 28, 2021. [Online]. Available: http://arxiv.org/abs/2010.00378. Aviles-Rivero AI, Sellars P, Schönlieb CB, Papadakis N. “GraphXCOVID: Explainable Deep Graph Diffusion Pseudo-Labelling for Identifying COVID-19 on Chest X-rays”. ArXiv201000378 Cs Stat 2021. Accessed: Feb. 28, 2021. [Online]. Available: http://​arxiv.​org/​abs/​2010.​00378.
79.
go back to reference Tartaglione E, Barbano CA, Berzovini C, Calandri M, Grangetto M. “Unveiling COVID-19 from CHEST X-Ray with Deep Learning: A Hurdles Race with Small Data”. Int J Environ Res Public Health 2020;17(18, Art. no. 18). Tartaglione E, Barbano CA, Berzovini C, Calandri M, Grangetto M. “Unveiling COVID-19 from CHEST X-Ray with Deep Learning: A Hurdles Race with Small Data”. Int J Environ Res Public Health 2020;17(18, Art. no. 18).
80.
85.
go back to reference Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res. 2014;15(1):3133–81.MathSciNetMATH Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res. 2014;15(1):3133–81.MathSciNetMATH
89.
90.
91.
go back to reference Kassania SH, Kassanib PH, Wesolowskic MJ, Schneidera KA, Detersa R. “Automatic Detection of Coronavirus Disease (COVID-19) in X-ray and CT Images: A Machine Learning-Based Approach”. ArXiv200410641 Cs Eess 2020. Accessed: Aug. 08, 2020. [Online]. Available: http://arxiv.org/abs/2004.10641. Kassania SH, Kassanib PH, Wesolowskic MJ, Schneidera KA, Detersa R.  “Automatic Detection of Coronavirus Disease (COVID-19) in X-ray and CT Images: A Machine Learning-Based Approach”. ArXiv200410641 Cs Eess 2020. Accessed: Aug. 08, 2020. [Online]. Available: http://​arxiv.​org/​abs/​2004.​10641.
94.
go back to reference Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S, Aviles-Rivero AI, Etmann C, McCague C, Beer L, Weir-McCall JR. “Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans”. Nat Mach Intell 2021;3(3, Art. no. 3). https://doi.org/10.1038/s42256-021-00307-0. Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S, Aviles-Rivero AI, Etmann C, McCague C, Beer L, Weir-McCall JR. “Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans”. Nat Mach Intell 2021;3(3, Art. no. 3). https://​doi.​org/​10.​1038/​s42256-021-00307-0.
Metadata
Title
Current limitations to identify covid-19 using artificial intelligence with chest x-ray imaging (part ii). The shortcut learning problem
Publication date
10-10-2021
Published in
Health and Technology / Issue 6/2021
Print ISSN: 2190-7188
Electronic ISSN: 2190-7196
DOI
https://doi.org/10.1007/s12553-021-00609-8

Other articles of this Issue 6/2021

Health and Technology 6/2021 Go to the issue

Premium Partner