Skip to main content
Top
Published in: Optical Memory and Neural Networks 1/2023

01-11-2023

Cylindrical Vector Beam of the Second Order in a Microstructured Waveguide

Authors: S. Stafeev, A. Pryamikov, G. Alagashev, V. Kotlyar

Published in: Optical Memory and Neural Networks | Special Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The propagation of vector mode of the second-order in microstructured and gradient waveguides was numerically investigated applying the RSoft FullWAVE package. It was shown that the investigated vector beams of the second-order are the vector modes of the proposed waveguides. In the obtained fundamental modes, there are regions in which the energy flux is directed opposite to the beam propagation direction (regions of the reverse energy flux).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hadžievski, L., Maluckov, A., Rubenchik, A.M., and Turitsyn, S., Stable optical vortices in nonlinear multicore fibers, Light: Sci. Appl., 2015, vol. 4, no. 8, pp. 2–7.CrossRef Hadžievski, L., Maluckov, A., Rubenchik, A.M., and Turitsyn, S., Stable optical vortices in nonlinear multicore fibers, Light: Sci. Appl., 2015, vol. 4, no. 8, pp. 2–7.CrossRef
2.
go back to reference Tu, J. et al., Ring-core fiber with negative curvature structure supporting orbital angular momentum modes, Opt. Express, 2019, vol. 27, no. 15, pp. 20358–20372.CrossRef Tu, J. et al., Ring-core fiber with negative curvature structure supporting orbital angular momentum modes, Opt. Express, 2019, vol. 27, no. 15, pp. 20358–20372.CrossRef
3.
go back to reference Wu, Y. et al., Low-loss and helical-phase-dependent selective excitation of high-order orbital angular momentum modes in a twisted ring-core fiber, Opt. Lett., 2022, vol. 47, no. 16, p. 4016.CrossRef Wu, Y. et al., Low-loss and helical-phase-dependent selective excitation of high-order orbital angular momentum modes in a twisted ring-core fiber, Opt. Lett., 2022, vol. 47, no. 16, p. 4016.CrossRef
4.
go back to reference Mao, D. et al., Generation of polarization and phase singular beams in fibers and fiber lasers, Adv. Photonics, 2021, vol. 3, no. 1, pp. 1–18.CrossRef Mao, D. et al., Generation of polarization and phase singular beams in fibers and fiber lasers, Adv. Photonics, 2021, vol. 3, no. 1, pp. 1–18.CrossRef
5.
go back to reference Li, S. and Wang, J., Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing, IEEE Photonics J., 2013, vol. 5, no. 5, p. 7101007.CrossRef Li, S. and Wang, J., Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing, IEEE Photonics J., 2013, vol. 5, no. 5, p. 7101007.CrossRef
6.
go back to reference Ma, M., Lian, Y., Wang, Y., and Lu, Z., Generation, transmission and application of orbital angular momentum in optical fiber: A review, Front. Phys., 2021, vol. 9, pp. 1–17.CrossRef Ma, M., Lian, Y., Wang, Y., and Lu, Z., Generation, transmission and application of orbital angular momentum in optical fiber: A review, Front. Phys., 2021, vol. 9, pp. 1–17.CrossRef
7.
go back to reference Ung, B., Vaity, P., Wang, L., Messaddeq, Y., Rusch, L.A., and LaRochelle, S., Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes, Opt. Express, 2014, vol. 22, no. 15, pp. 18044–18055.CrossRef Ung, B., Vaity, P., Wang, L., Messaddeq, Y., Rusch, L.A., and LaRochelle, S., Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes, Opt. Express, 2014, vol. 22, no. 15, pp. 18044–18055.CrossRef
8.
go back to reference Brunet, C., Vaity, P., Messaddeq, Y., LaRochelle, S., and Rusch, L.A., Design, fabrication and validation of an OAM fiber supporting 36 states, Opt. Express, 2014, vol. 22, no. 21, p. 26117.CrossRef Brunet, C., Vaity, P., Messaddeq, Y., LaRochelle, S., and Rusch, L.A., Design, fabrication and validation of an OAM fiber supporting 36 states, Opt. Express, 2014, vol. 22, no. 21, p. 26117.CrossRef
9.
go back to reference Jin, X. et al., Mode coupling effects in ring-core fibers for space-division multiplexing systems, J. Light. Technol., 2016, vol. 34, no. 14, pp. 3365–3372.CrossRef Jin, X. et al., Mode coupling effects in ring-core fibers for space-division multiplexing systems, J. Light. Technol., 2016, vol. 34, no. 14, pp. 3365–3372.CrossRef
10.
go back to reference Jung, Y. et al., Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission, J. Light. Technol., 2017, vol. 35, no. 8, pp. 1363–1368.CrossRef Jung, Y. et al., Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission, J. Light. Technol., 2017, vol. 35, no. 8, pp. 1363–1368.CrossRef
11.
go back to reference Zhu, M., Zhang, W., Xi, L., Tang, X., and Zhang, X., A new designed dual-guided ring-core fiber for OAM mode transmission, Opt. Fiber Technol., 2015, vol. 25, pp. 58–63.CrossRef Zhu, M., Zhang, W., Xi, L., Tang, X., and Zhang, X., A new designed dual-guided ring-core fiber for OAM mode transmission, Opt. Fiber Technol., 2015, vol. 25, pp. 58–63.CrossRef
12.
go back to reference Brunet, C., Ung, B., Wang, L., Messaddeq, Y., LaRochelle, S., and Rusch, L.A., Design of a family of ring-core fibers for OAM transmission studies, Opt. Express, 2015, vol. 23, no. 8, p. 10553.CrossRef Brunet, C., Ung, B., Wang, L., Messaddeq, Y., LaRochelle, S., and Rusch, L.A., Design of a family of ring-core fibers for OAM transmission studies, Opt. Express, 2015, vol. 23, no. 8, p. 10553.CrossRef
13.
go back to reference Li, H. et al., Broadband orbital angular momentum transmission using a hollow-core photonic bandgap fiber, Opt. Lett., 2016, vol. 41, no. 15, p. 3591.CrossRef Li, H. et al., Broadband orbital angular momentum transmission using a hollow-core photonic bandgap fiber, Opt. Lett., 2016, vol. 41, no. 15, p. 3591.CrossRef
14.
go back to reference Li, H. et al., Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers, Opt. Lett., 2017, vol. 42, no. 2, p. 179.CrossRef Li, H. et al., Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers, Opt. Lett., 2017, vol. 42, no. 2, p. 179.CrossRef
15.
go back to reference Sharma, M., Pradhan, P., and Ung, B., Endlessly mono-radial annular core photonic crystal fiber for the broadband transmission and supercontinuum generation of vortex beams, Sci. Rep., 2019, vol. 9, no. 1, pp. 1–12. Sharma, M., Pradhan, P., and Ung, B., Endlessly mono-radial annular core photonic crystal fiber for the broadband transmission and supercontinuum generation of vortex beams, Sci. Rep., 2019, vol. 9, no. 1, pp. 1–12.
16.
go back to reference Bai, X., Chen, H., and Yang, H., Design of a circular photonic crystal fiber with square air-holes for orbital angular momentum modes transmission, Optik, 2018, vol. 158, pp. 1266–1274.CrossRef Bai, X., Chen, H., and Yang, H., Design of a circular photonic crystal fiber with square air-holes for orbital angular momentum modes transmission, Optik, 2018, vol. 158, pp. 1266–1274.CrossRef
17.
go back to reference Wang, W., Sun, C., Wang, N., and Jia, H., A design of nested photonic crystal fiber with low nonlinear and flat dispersion supporting 30+50 OAM modes, Opt. Commun., 2020, vol. 471, p. 125823.CrossRef Wang, W., Sun, C., Wang, N., and Jia, H., A design of nested photonic crystal fiber with low nonlinear and flat dispersion supporting 30+50 OAM modes, Opt. Commun., 2020, vol. 471, p. 125823.CrossRef
18.
go back to reference Zhang, H. et al., A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission, Opt. Commun., 2017, vol. 397, pp. 59–66.CrossRef Zhang, H. et al., A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission, Opt. Commun., 2017, vol. 397, pp. 59–66.CrossRef
19.
go back to reference Li, B., Zhou, G., Liu, J., Xia, C., and Hou, Z., Orbital-angular-momentum-amplifying helical vector modes in Yb 3+ -doped three-core twisted microstructure fiber, Opt. Express, 2020, vol. 28, no. 14, p. 21110.CrossRef Li, B., Zhou, G., Liu, J., Xia, C., and Hou, Z., Orbital-angular-momentum-amplifying helical vector modes in Yb 3+ -doped three-core twisted microstructure fiber, Opt. Express, 2020, vol. 28, no. 14, p. 21110.CrossRef
20.
go back to reference Kotlyar, V.V., Stafeev, S.S., and Nalimov, A.G., Energy backflow in the focus of a light beam with phase or polarization singularity, Phys. Rev. A, 2019, vol. 99, no. 3, p. 033840.CrossRef Kotlyar, V.V., Stafeev, S.S., and Nalimov, A.G., Energy backflow in the focus of a light beam with phase or polarization singularity, Phys. Rev. A, 2019, vol. 99, no. 3, p. 033840.CrossRef
21.
go back to reference Stafeev, S.S., Kotlyar, V.V., Nalimov, A.G., and Kozlova, E.S., The non-vortex inverse propagation of energy in a tightly focused high-order cylindrical vector beam, IEEE Photonics J., 2019, vol. 11, no. 4, p. 4500810.CrossRef Stafeev, S.S., Kotlyar, V.V., Nalimov, A.G., and Kozlova, E.S., The non-vortex inverse propagation of energy in a tightly focused high-order cylindrical vector beam, IEEE Photonics J., 2019, vol. 11, no. 4, p. 4500810.CrossRef
22.
go back to reference Stafeev, S.S. and Nalimov, A.G., Longitudinal component of the Poynting vector of a tightly focused optical vortex with circular polarization, Comput. Opt., 2018, vol. 42, no. 2, pp. 190–196.CrossRef Stafeev, S.S. and Nalimov, A.G., Longitudinal component of the Poynting vector of a tightly focused optical vortex with circular polarization, Comput. Opt., 2018, vol. 42, no. 2, pp. 190–196.CrossRef
23.
go back to reference Sukhov, S. and Dogariu, A., On the concept of “tractor beams”, Opt. Lett., 2010, vol. 35, no. 22, pp. 3847–3849.CrossRef Sukhov, S. and Dogariu, A., On the concept of “tractor beams”, Opt. Lett., 2010, vol. 35, no. 22, pp. 3847–3849.CrossRef
24.
go back to reference Xin, H. and Li, B., Fiber-based optical trapping and manipulation, Front. Optoelectron., 2019, vol. 12, no. 1, pp. 97–110.CrossRef Xin, H. and Li, B., Fiber-based optical trapping and manipulation, Front. Optoelectron., 2019, vol. 12, no. 1, pp. 97–110.CrossRef
25.
go back to reference Zhao, X., Zhao, N., Shi, Y., Xin, H., and Li, B., Optical fiber tweezers: A versatile tool for optical trapping and manipulation, Micromachines, 2020, vol. 11, no. 2, p. 114.CrossRef Zhao, X., Zhao, N., Shi, Y., Xin, H., and Li, B., Optical fiber tweezers: A versatile tool for optical trapping and manipulation, Micromachines, 2020, vol. 11, no. 2, p. 114.CrossRef
26.
go back to reference Lyons, E.R. and Sonek, G.J., Confinement and bistability in a tapered hemispherically lensed optical fiber trap, Appl. Phys. Lett., 1995, vol. 66, no. 13, pp. 1584–1586.CrossRef Lyons, E.R. and Sonek, G.J., Confinement and bistability in a tapered hemispherically lensed optical fiber trap, Appl. Phys. Lett., 1995, vol. 66, no. 13, pp. 1584–1586.CrossRef
27.
go back to reference Constable, A., Kim, J., Mervis, J., Zarinetchi, F., and Prentiss, M., Demonstration of a-fiber-optical light-force trap, Opt. Lett., 1993, vol. 18, no. 21, pp. 1867–1869.CrossRef Constable, A., Kim, J., Mervis, J., Zarinetchi, F., and Prentiss, M., Demonstration of a-fiber-optical light-force trap, Opt. Lett., 1993, vol. 18, no. 21, pp. 1867–1869.CrossRef
28.
go back to reference Liu, Z., Guo, C., Yang, J., and Yuan, L., Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application, Opt. Express, 2006, vol. 14, no. 25, p. 12510.CrossRef Liu, Z., Guo, C., Yang, J., and Yuan, L., Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application, Opt. Express, 2006, vol. 14, no. 25, p. 12510.CrossRef
29.
go back to reference Hu, Z., Wang, J., and Liang, J., Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe, Opt. Express, 2004, vol. 12, no. 17, p. 4123.CrossRef Hu, Z., Wang, J., and Liang, J., Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe, Opt. Express, 2004, vol. 12, no. 17, p. 4123.CrossRef
30.
go back to reference Liberale, C., Minzioni, P., Bragheri, F., De Angelis, F., Di Fabrizio, E., and Cristiani, I., Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation, Nat. Photonics, 2007, vol. 1, no. 12, pp. 723–727.CrossRef Liberale, C., Minzioni, P., Bragheri, F., De Angelis, F., Di Fabrizio, E., and Cristiani, I., Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation, Nat. Photonics, 2007, vol. 1, no. 12, pp. 723–727.CrossRef
31.
go back to reference Asadollahbaik, A. et al., Highly Efficient Dual-Fiber Optical Trapping with 3D Printed Diffractive Fresnel Lenses, ACS Photonics, 2020, vol. 7, no. 1, pp. 88–97.CrossRef Asadollahbaik, A. et al., Highly Efficient Dual-Fiber Optical Trapping with 3D Printed Diffractive Fresnel Lenses, ACS Photonics, 2020, vol. 7, no. 1, pp. 88–97.CrossRef
32.
go back to reference Zhao, Q., Yuan, W., Qu, J., Cheng, Z., Peng, G.-D., and Yu, C., Optical Fiber-Integrated Metasurfaces: An Emerging Platform for Multiple Optical Applications, Nanomaterials, 2022, vol. 12, no. 5, p. 793.CrossRef Zhao, Q., Yuan, W., Qu, J., Cheng, Z., Peng, G.-D., and Yu, C., Optical Fiber-Integrated Metasurfaces: An Emerging Platform for Multiple Optical Applications, Nanomaterials, 2022, vol. 12, no. 5, p. 793.CrossRef
33.
go back to reference Yang, J. et al., Photonic crystal fiber metalens, Nanophotonics, 2019, vol. 8, no. 3, pp. 443–449.CrossRef Yang, J. et al., Photonic crystal fiber metalens, Nanophotonics, 2019, vol. 8, no. 3, pp. 443–449.CrossRef
34.
go back to reference Plidschun, M., Ren, H., Kim, J., Förster, R., Maier, S.A., and Schmidt, M.A., Ultrahigh numerical aperture meta-fibre for flexible optical trapping, Light: Sci. Appl., 2021, vol. 10, no. 1. Plidschun, M., Ren, H., Kim, J., Förster, R., Maier, S.A., and Schmidt, M.A., Ultrahigh numerical aperture meta-fibre for flexible optical trapping, Light: Sci. Appl., 2021, vol. 10, no. 1.
35.
go back to reference Kawata, S. and Sugiura, T., Movement of micrometer-sized particles in the evanescent field of a laser beam, Opt. Lett., 1992, vol. 17, no. 11, p. 772.CrossRef Kawata, S. and Sugiura, T., Movement of micrometer-sized particles in the evanescent field of a laser beam, Opt. Lett., 1992, vol. 17, no. 11, p. 772.CrossRef
36.
go back to reference Wang, K., Schonbrun, E., and Crozier, K.B., Propulsion of gold nanoparticles with surface plasmon polaritons: Evidence of enhanced optical force from near-field coupling between gold particle and gold film, Nano Lett., 2009, vol. 9, no. 7, pp. 2623–2629.CrossRef Wang, K., Schonbrun, E., and Crozier, K.B., Propulsion of gold nanoparticles with surface plasmon polaritons: Evidence of enhanced optical force from near-field coupling between gold particle and gold film, Nano Lett., 2009, vol. 9, no. 7, pp. 2623–2629.CrossRef
37.
go back to reference Rashid, M., Maragò, O.M., and Jones, P. H., Focusing of high order cylindrical vector beams, J. Opt. A: Pure Appl. Opt., 2009, vol. 11, no. 6, p. 065204. Rashid, M., Maragò, O.M., and Jones, P. H., Focusing of high order cylindrical vector beams, J. Opt. A: Pure Appl. Opt., 2009, vol. 11, no. 6, p. 065204.
38.
go back to reference Huang, K., Shi, P., Cao, G.W., Li, K., Zhang, X.B., and Li, Y.P., Vector-vortex Bessel–Gauss beams and their tightly focusing properties, Opt. Lett., 2011, vol. 36, no. 6, pp. 888–890.CrossRef Huang, K., Shi, P., Cao, G.W., Li, K., Zhang, X.B., and Li, Y.P., Vector-vortex Bessel–Gauss beams and their tightly focusing properties, Opt. Lett., 2011, vol. 36, no. 6, pp. 888–890.CrossRef
39.
go back to reference Guo, H., Sui, G., Weng, X., Dong, X., Hu, Q., and Zhuang, S., Control of the multifocal properties of composite vector beams in tightly focusing systems, Opt. Express, 2011, vol. 19, no. 24, pp. 24067–24077.CrossRef Guo, H., Sui, G., Weng, X., Dong, X., Hu, Q., and Zhuang, S., Control of the multifocal properties of composite vector beams in tightly focusing systems, Opt. Express, 2011, vol. 19, no. 24, pp. 24067–24077.CrossRef
40.
go back to reference Vyas, S., Niwa, M., Kozawa, Y., and Sato, S., Diffractive properties of obstructed vector Laguerre–Gaussian beam under tight focusing condition, J. Opt. Soc. Am. A, 2011, vol. 28, no. 7, pp. 1387–1394.CrossRef Vyas, S., Niwa, M., Kozawa, Y., and Sato, S., Diffractive properties of obstructed vector Laguerre–Gaussian beam under tight focusing condition, J. Opt. Soc. Am. A, 2011, vol. 28, no. 7, pp. 1387–1394.CrossRef
41.
go back to reference Li, M., Yan, S., Liang, Y., Zhang, P., and Yao, B., Transverse spinning of particles in highly focused vector vortex beams, Phys. Rev. A, 2017, vol. 95, no. 5, p. 053802.CrossRef Li, M., Yan, S., Liang, Y., Zhang, P., and Yao, B., Transverse spinning of particles in highly focused vector vortex beams, Phys. Rev. A, 2017, vol. 95, no. 5, p. 053802.CrossRef
42.
go back to reference Egorova, O.N. et al., Single-mode all-silica photonic bandgap fiber with 20-μm mode-field diameter, Opt. Express, 2008, vol. 16, no. 16, pp. 11735–11740.CrossRef Egorova, O.N. et al., Single-mode all-silica photonic bandgap fiber with 20-μm mode-field diameter, Opt. Express, 2008, vol. 16, no. 16, pp. 11735–11740.CrossRef
43.
go back to reference Alagashev, G., Stafeev, S., Kotlyar, V., and Pryamikov, A., The effect of the spin and orbital parts of the poynting vector on light localization in solid-core micro-structured optical fibers, Photonics, 2022, vol. 9, no. 10, p. 775.CrossRef Alagashev, G., Stafeev, S., Kotlyar, V., and Pryamikov, A., The effect of the spin and orbital parts of the poynting vector on light localization in solid-core micro-structured optical fibers, Photonics, 2022, vol. 9, no. 10, p. 775.CrossRef
44.
go back to reference Tandjè, A. et al., Ring-core photonic crystal fiber for propagation of OAM modes, Opt. Lett., 2019, vol. 44, no. 7, pp. 1611–1614.CrossRef Tandjè, A. et al., Ring-core photonic crystal fiber for propagation of OAM modes, Opt. Lett., 2019, vol. 44, no. 7, pp. 1611–1614.CrossRef
45.
go back to reference Wang, X., Yu, Y., Gu, H., Song, Y., Pang, F., Li, Y., Zhang, Q., Zhuang, L., Yang, S., He, X., Yang, Yudong, 120 km low-loss propagating OAM beams enabled by OAM-mode group multiplexing and a ring-core fiber, Opt. Commun., 2022, vol. 516, p. 128264.CrossRef Wang, X., Yu, Y., Gu, H., Song, Y., Pang, F., Li, Y., Zhang, Q., Zhuang, L., Yang, S., He, X., Yang, Yudong, 120 km low-loss propagating OAM beams enabled by OAM-mode group multiplexing and a ring-core fiber, Opt. Commun., 2022, vol. 516, p. 128264.CrossRef
46.
go back to reference Kamruzzaman, M.M., Mhatli, S., Arun Kumar, U., Roopa Jayasingh, J., and Sivasakthiselvan, S., Design of circular photonic crystal fiber for OAM extraction SDM applications, Opt. Quantum Electron., 2022, vol. 54, no. 12, p. 864.CrossRef Kamruzzaman, M.M., Mhatli, S., Arun Kumar, U., Roopa Jayasingh, J., and Sivasakthiselvan, S., Design of circular photonic crystal fiber for OAM extraction SDM applications, Opt. Quantum Electron., 2022, vol. 54, no. 12, p. 864.CrossRef
47.
go back to reference Xu, M., Zhou, G., Chen, C., Zhou, G., Sheng, Z., Hou, Z., and Xia, C., A novel micro-structured fiber for OAM mode and LP mode simultaneous transmission, J. Opt., 2018, vol. 47, no. 4, pp. 428–436.CrossRef Xu, M., Zhou, G., Chen, C., Zhou, G., Sheng, Z., Hou, Z., and Xia, C., A novel micro-structured fiber for OAM mode and LP mode simultaneous transmission, J. Opt., 2018, vol. 47, no. 4, pp. 428–436.CrossRef
48.
go back to reference Mikaelian, A.L., Application of stratified medium for waves focusing, Dokl. Akad. Nauk SSSR, 1951, vol. 81, pp. 569–571. Mikaelian, A.L., Application of stratified medium for waves focusing, Dokl. Akad. Nauk SSSR, 1951, vol. 81, pp. 569–571.
49.
go back to reference Stafeev, S.S., Kozlova, E.S., and Nalimov, A.G., Focusing a second-order cylindrical vector beam with a gradient index Mikaelian lens, Comput. Opt., 2020, vol. 44, no. 1, pp. 29–33.CrossRef Stafeev, S.S., Kozlova, E.S., and Nalimov, A.G., Focusing a second-order cylindrical vector beam with a gradient index Mikaelian lens, Comput. Opt., 2020, vol. 44, no. 1, pp. 29–33.CrossRef
Metadata
Title
Cylindrical Vector Beam of the Second Order in a Microstructured Waveguide
Authors
S. Stafeev
A. Pryamikov
G. Alagashev
V. Kotlyar
Publication date
01-11-2023
Publisher
Pleiades Publishing
Published in
Optical Memory and Neural Networks / Issue Special Issue 1/2023
Print ISSN: 1060-992X
Electronic ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X2305017X

Other articles of this Special Issue 1/2023

Optical Memory and Neural Networks 1/2023 Go to the issue

Premium Partner