Skip to main content
Top
Published in: Journal of Nondestructive Evaluation 2/2020

01-06-2020

Damage Detection of L-Shaped Beam Structure with a Crack by Electromechanical Impedance Response: Analytical Approach and Experimental Validation

Authors: Seyed Reza Hamzeloo, Mohsen Barzegar, Mohsen Mohsenzadeh

Published in: Journal of Nondestructive Evaluation | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Damage detection and structural health monitoring using the electromechanical impedance method has been accepted as an effective technique between various approaches of nondestructive evaluation. Many efforts have been made on experimental methods for obtaining the impedance of structures. However, expensive experimental methods encourage researchers to develop theoretical models. In this paper, a new theoretical model is developed for damage detection of L-shaped beams, which are basic components in frame structures, with an embedded piezoelectric wafer active sensor. For this purpose, a chirp signal of voltage is used to activate a piezoelectric patch for inducing local strains that lead to lateral forces and bending moments on the structure, emerging resonance and anti-resonance vibration behavior of the structure in a wide frequency range. Considering these induced loads, the impedance at each point of the structure is determined by calculating the dynamic stiffness of structures. The model results verified by experiments. The estimated impedance spectrum for both pristine and damaged structure has shown an acceptable agreement, particularly, around the structural resonances. The results show that electromechanical impedance responses of the structure depend on excitation and natural frequencies of the structure which emerge as resonance frequencies in the impedance spectrum. Finally, damage detection is performed using statistical algorithms including root-mean-square deviation and cross-correlation by comparing pristine and damaged L-shaped beams and accordance between experiment and model results demonstrates the efficacy of predicted spectra.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Wongi, S.N., Jongdae, B.: A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures. J. Sens. 18(5), 1307 (2018)CrossRef Wongi, S.N., Jongdae, B.: A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures. J. Sens. 18(5), 1307 (2018)CrossRef
2.
go back to reference Annamdas, V.G.M., Soh, C.K.: Application of electromechanical impedance technique for engineering structures: review and future issues. J. Intell. Mater. Syst. Struct. 21, 41–59 (2010)CrossRef Annamdas, V.G.M., Soh, C.K.: Application of electromechanical impedance technique for engineering structures: review and future issues. J. Intell. Mater. Syst. Struct. 21, 41–59 (2010)CrossRef
3.
go back to reference Park, G., Inman, D.J.: Structural health monitoring using piezoelectric impedance measurements. J. Philos. Trans. R. Soc. 365, 373–392 (2007)CrossRef Park, G., Inman, D.J.: Structural health monitoring using piezoelectric impedance measurements. J. Philos. Trans. R. Soc. 365, 373–392 (2007)CrossRef
4.
go back to reference Hamzeloo, S.R., Shamshirsaz, M., Rezaei, S.M.: Damage detection on hollow cylinders by electro-mechanical impedance method: experiments and finite element modeling. C.R. Mec. 340, 668–677 (2012)CrossRef Hamzeloo, S.R., Shamshirsaz, M., Rezaei, S.M.: Damage detection on hollow cylinders by electro-mechanical impedance method: experiments and finite element modeling. C.R. Mec. 340, 668–677 (2012)CrossRef
5.
go back to reference Gulizzi, V., Rizzo, P., Milazzo, A., Ribolla, E.L.M.: An integrated structural health monitoring system based on electromechanical impedance and guided ultrasonic waves. J. Civil Struct. Health Monit. 5(3), 337–352 (2015)CrossRef Gulizzi, V., Rizzo, P., Milazzo, A., Ribolla, E.L.M.: An integrated structural health monitoring system based on electromechanical impedance and guided ultrasonic waves. J. Civil Struct. Health Monit. 5(3), 337–352 (2015)CrossRef
6.
go back to reference Li, W., Liu, T., Wang, J., Zou, D.: Finite-element analysis of an electromechanical impedance–based corrosion sensor with experimental verification. J. Aerosp. Eng. 32(3), 04019012 (2019)CrossRef Li, W., Liu, T., Wang, J., Zou, D.: Finite-element analysis of an electromechanical impedance–based corrosion sensor with experimental verification. J. Aerosp. Eng. 32(3), 04019012 (2019)CrossRef
7.
go back to reference Malinowski, P. H., Ostachowicz, W. M., Brune, K., Schlag, M.: Study of electromechanical impedance changes caused by modifications of CFRP adhesive bonds; 2017 Malinowski, P. H., Ostachowicz, W. M., Brune, K., Schlag, M.: Study of electromechanical impedance changes caused by modifications of CFRP adhesive bonds; 2017
8.
go back to reference Jung, H.K., Jo, H., Park, G., Mascarenas, D.L., Farrar, C.R.: Relative baseline features for impedance-based structural health monitoring. J. Intell. Mater. Syst. Struct. 25(18), 2294–2304 (2014)CrossRef Jung, H.K., Jo, H., Park, G., Mascarenas, D.L., Farrar, C.R.: Relative baseline features for impedance-based structural health monitoring. J. Intell. Mater. Syst. Struct. 25(18), 2294–2304 (2014)CrossRef
9.
go back to reference Yan, W., Wang, J., Chen, W.Q., Li, W.C.: electromechanical impedance response of a cracked functionally graded beam with imperfectly bonded piezoelectric wafers. J. Intell. Mater. Syst. Struct. 22(16), 1899–1912 (2011)CrossRef Yan, W., Wang, J., Chen, W.Q., Li, W.C.: electromechanical impedance response of a cracked functionally graded beam with imperfectly bonded piezoelectric wafers. J. Intell. Mater. Syst. Struct. 22(16), 1899–1912 (2011)CrossRef
10.
go back to reference Giurgiutiu V., Rogers C. A.: Modeling of electromechanical (E/M) impedance response of a damaged composite beam. In Adaptive Structures and Material Systems Symposium, Nashville, 1999 Giurgiutiu V., Rogers C. A.: Modeling of electromechanical (E/M) impedance response of a damaged composite beam. In Adaptive Structures and Material Systems Symposium, Nashville, 1999
11.
go back to reference Bhalla, S., Kumar, P., Gupta, A., Datta, T.K.: Simplified impedance model for adhesively bonded piezo-impedance transducers. J. Aerosp. Eng. 22, 373–382 (2009)CrossRef Bhalla, S., Kumar, P., Gupta, A., Datta, T.K.: Simplified impedance model for adhesively bonded piezo-impedance transducers. J. Aerosp. Eng. 22, 373–382 (2009)CrossRef
12.
go back to reference Gresil, M., Yu, L., Giurgiutiu, V., Sutton, M.: Predictive modeling of electromechanical impedance spectroscopy for composite materials. J. Struct. Health Monit. 11(6), 671–683 (2012)CrossRef Gresil, M., Yu, L., Giurgiutiu, V., Sutton, M.: Predictive modeling of electromechanical impedance spectroscopy for composite materials. J. Struct. Health Monit. 11(6), 671–683 (2012)CrossRef
13.
go back to reference Yang, Y., Hu, Y.: Electromechanical impedance modeling of PZT transducers for health monitoring of cylindrical shell structures. J. Smart Mater. Struct. 28, 3 (2007) Yang, Y., Hu, Y.: Electromechanical impedance modeling of PZT transducers for health monitoring of cylindrical shell structures. J. Smart Mater. Struct. 28, 3 (2007)
14.
go back to reference Giurgiutiu, V., Zagrai, A.M.: Electro-mechanical impedance method for crack detection in thin plates. J. Intell. Mater. Syst. Struct. 12, 709–718 (2002) Giurgiutiu, V., Zagrai, A.M.: Electro-mechanical impedance method for crack detection in thin plates. J. Intell. Mater. Syst. Struct. 12, 709–718 (2002)
15.
go back to reference Zhu, W.D., He, K.: Detection of damage in space frame structures with L-shaped beams and bolted joints using changes in natural frequencies. J. Vib. Acoust. 135(5), 2–51 (2013) Zhu, W.D., He, K.: Detection of damage in space frame structures with L-shaped beams and bolted joints using changes in natural frequencies. J. Vib. Acoust. 135(5), 2–51 (2013)
22.
go back to reference Rao, S. S.: In: Proceedings of the Vibration of Continuous Systems, Wiley, New York, pp. 317–392 (2007) Rao, S. S.: In: Proceedings of the Vibration of Continuous Systems, Wiley, New York, pp. 317–392 (2007)
Metadata
Title
Damage Detection of L-Shaped Beam Structure with a Crack by Electromechanical Impedance Response: Analytical Approach and Experimental Validation
Authors
Seyed Reza Hamzeloo
Mohsen Barzegar
Mohsen Mohsenzadeh
Publication date
01-06-2020
Publisher
Springer US
Published in
Journal of Nondestructive Evaluation / Issue 2/2020
Print ISSN: 0195-9298
Electronic ISSN: 1573-4862
DOI
https://doi.org/10.1007/s10921-020-00692-3

Other articles of this Issue 2/2020

Journal of Nondestructive Evaluation 2/2020 Go to the issue

Premium Partners