Skip to main content
Top
Published in: Computational Mechanics 5/2018

12-01-2018 | Original Paper

Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing

Authors: Wentao Yan, Stephen Lin, Orion L. Kafka, Yanping Lian, Cheng Yu, Zeliang Liu, Jinhui Yan, Sarah Wolff, Hao Wu, Ebot Ndip-Agbor, Mojtaba Mozaffar, Kornel Ehmann, Jian Cao, Gregory J. Wagner, Wing Kam Liu

Published in: Computational Mechanics | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process–structure–property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process–structure, structure–properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference ASTM (2014) Standard terminology for additive manufacturing technologies. ASTM International, West Conshohocken (2014) ASTM (2014) Standard terminology for additive manufacturing technologies. ASTM International, West Conshohocken (2014)
2.
go back to reference Yang L, Harrysson O, West H, Cormier D (2012) Compressive properties of Ti–6Al–4V auxetic mesh structures made by electron beam melting. Acta Mater 60(8):3370–3379CrossRef Yang L, Harrysson O, West H, Cormier D (2012) Compressive properties of Ti–6Al–4V auxetic mesh structures made by electron beam melting. Acta Mater 60(8):3370–3379CrossRef
3.
go back to reference Ge W, Lin F, Guo C (2015) Microstructure and mechanical property of electron beam selective melting Ti–6Al–4V/Ti–Al structural gradient material. In: 26th Annual international symposium on solid freeform fabrication, Austin, Texas Ge W, Lin F, Guo C (2015) Microstructure and mechanical property of electron beam selective melting Ti–6Al–4V/Ti–Al structural gradient material. In: 26th Annual international symposium on solid freeform fabrication, Austin, Texas
4.
go back to reference Ge W, Guo C, Lin F (2015) Microstructures of components synthesized via electron beam selective melting using blended pre-alloyed powders of Ti–6Al–4V and Ti–45Al–7Nb. Rare Metal Mater Eng 44:2623–2627CrossRef Ge W, Guo C, Lin F (2015) Microstructures of components synthesized via electron beam selective melting using blended pre-alloyed powders of Ti–6Al–4V and Ti–45Al–7Nb. Rare Metal Mater Eng 44:2623–2627CrossRef
5.
go back to reference Guo C, Ge W, Lin F (2015) Dual-material electron beam selective melting: hardware development and validation studies. Engineering 1(1):124CrossRef Guo C, Ge W, Lin F (2015) Dual-material electron beam selective melting: hardware development and validation studies. Engineering 1(1):124CrossRef
6.
go back to reference Ma C, Gu D, Dai D, Chen W, Chang F, Yuan P, Shen Y (2015) Aluminum-based nanocomposites with hybrid reinforcements prepared by mechanical alloying and selective laser melting consolidation. J Mater Res 30(18):2816–2828CrossRef Ma C, Gu D, Dai D, Chen W, Chang F, Yuan P, Shen Y (2015) Aluminum-based nanocomposites with hybrid reinforcements prepared by mechanical alloying and selective laser melting consolidation. J Mater Res 30(18):2816–2828CrossRef
7.
go back to reference Tan X, Kok Y, Tan YJ, Descoins M, Mangelinck D, Tor SB, Leong KF, Chua CK (2015) Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting. Acta Mater 97:1–16CrossRef Tan X, Kok Y, Tan YJ, Descoins M, Mangelinck D, Tor SB, Leong KF, Chua CK (2015) Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting. Acta Mater 97:1–16CrossRef
8.
go back to reference Ramsperger M, Körner C (2016) SEBM of the single crystalline Ni-based superalloy CMSX-4. In: the 1st EBAM conference, Nuremberg, Germany Ramsperger M, Körner C (2016) SEBM of the single crystalline Ni-based superalloy CMSX-4. In: the 1st EBAM conference, Nuremberg, Germany
9.
go back to reference Dehoff R, Kirka M, Sames W, Bilheux H, Tremsin A, Lowe L, Babu S (2015) Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Mater SciTechnol 31(8):931–938 Dehoff R, Kirka M, Sames W, Bilheux H, Tremsin A, Lowe L, Babu S (2015) Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Mater SciTechnol 31(8):931–938
10.
go back to reference Morton PA, Mireles J, Mendoza H, Cordero PM, Benedict M, Wicker RB (2015) Enhancement of low-cycle fatigue performance from tailored microstructures enabled by electron beam melting additive manufacturing technology. J Mech Des 137(11):111412CrossRef Morton PA, Mireles J, Mendoza H, Cordero PM, Benedict M, Wicker RB (2015) Enhancement of low-cycle fatigue performance from tailored microstructures enabled by electron beam melting additive manufacturing technology. J Mech Des 137(11):111412CrossRef
11.
go back to reference Yadroitsau I (2009) Selective laser melting: direct manufacturing of 3D-objects by selective laser melting of metal powders. Lambert Academic Publishing, Saarbrucken Yadroitsau I (2009) Selective laser melting: direct manufacturing of 3D-objects by selective laser melting of metal powders. Lambert Academic Publishing, Saarbrucken
12.
go back to reference Yan W, Ge W, Smith J, Wagner G, Lin F, Liu WK (2015) Towards high-quality selective beam melting technologies: modeling and experiments of single track formations. In: 26th Annual international symposium on solid freeform fabrication, Austin, Texas Yan W, Ge W, Smith J, Wagner G, Lin F, Liu WK (2015) Towards high-quality selective beam melting technologies: modeling and experiments of single track formations. In: 26th Annual international symposium on solid freeform fabrication, Austin, Texas
13.
go back to reference Kundakcioglu E, Lazoglu I, Rawal S (2016) Transient thermal modeling of laser-based additive manufacturing for 3D freeform structures. Int J Adv Manuf Technol 85(1–4):493–501CrossRef Kundakcioglu E, Lazoglu I, Rawal S (2016) Transient thermal modeling of laser-based additive manufacturing for 3D freeform structures. Int J Adv Manuf Technol 85(1–4):493–501CrossRef
14.
go back to reference Roberts I, Wang C, Esterlein R, Stanford M, Mynors D (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf 49(12):916–923CrossRef Roberts I, Wang C, Esterlein R, Stanford M, Mynors D (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf 49(12):916–923CrossRef
15.
go back to reference Parry L, Ashcroft I, Wildman R (2016) Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit Manuf 12:1–15CrossRef Parry L, Ashcroft I, Wildman R (2016) Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit Manuf 12:1–15CrossRef
16.
go back to reference Heigel J, Michaleris P, Reutzel E (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Addit Manuf 5:9–19CrossRef Heigel J, Michaleris P, Reutzel E (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Addit Manuf 5:9–19CrossRef
17.
go back to reference Hodge N, Ferencz R, Solberg J (2014) Implementation of a thermomechanical model for the simulation of selective laser melting. Comput Mech 54(1):33–51MathSciNetCrossRefMATH Hodge N, Ferencz R, Solberg J (2014) Implementation of a thermomechanical model for the simulation of selective laser melting. Comput Mech 54(1):33–51MathSciNetCrossRefMATH
18.
go back to reference Smith J, Xiong W, Cao J, Liu WK (2016) Thermodynamically consistent microstructure prediction of additively manufactured materials. Comput Mech 57:359–370CrossRefMATH Smith J, Xiong W, Cao J, Liu WK (2016) Thermodynamically consistent microstructure prediction of additively manufactured materials. Comput Mech 57:359–370CrossRefMATH
19.
go back to reference Ghosh S (2006) Process modeling for solidification microstructure and transient thermal stresses in laser aided DMD process. Ph.D. thesis, University of Missouri, Rolla Ghosh S (2006) Process modeling for solidification microstructure and transient thermal stresses in laser aided DMD process. Ph.D. thesis, University of Missouri, Rolla
20.
go back to reference Schoinochoritis B, Chantzis D, Salonitis K (2017) Simulation of metallic powder bed additive manufacturing processes with the finite element method: a critical review. Proc Inst Mech Eng Part B J Eng Manuf 231:96–117CrossRef Schoinochoritis B, Chantzis D, Salonitis K (2017) Simulation of metallic powder bed additive manufacturing processes with the finite element method: a critical review. Proc Inst Mech Eng Part B J Eng Manuf 231:96–117CrossRef
21.
go back to reference Körner C, Bauereiß A, Attar E (2013) Fundamental consolidation mechanisms during selective beam melting of powders. Modelling Simul Mater Sci Eng 21(8):085011CrossRef Körner C, Bauereiß A, Attar E (2013) Fundamental consolidation mechanisms during selective beam melting of powders. Modelling Simul Mater Sci Eng 21(8):085011CrossRef
22.
go back to reference Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45CrossRef Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45CrossRef
23.
go back to reference Qiu C, Panwisawas C, Ward M, Basoalto HC, Brooks JW, Attallah MM (2015) On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater 96:72–79CrossRef Qiu C, Panwisawas C, Ward M, Basoalto HC, Brooks JW, Attallah MM (2015) On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater 96:72–79CrossRef
24.
go back to reference Rai A, Markl M, Körner C (2016) A coupled cellular automaton–lattice Boltzmann model for grain structure simulation during additive manufacturing. Comput Mater Sci 124:37–48CrossRef Rai A, Markl M, Körner C (2016) A coupled cellular automaton–lattice Boltzmann model for grain structure simulation during additive manufacturing. Comput Mater Sci 124:37–48CrossRef
25.
go back to reference Panwisawas C, Qiu C, Anderson MJ, Sovani Y, Turner RP, Attallah MM, Brooks JW, Basoalto HC (2017) Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution. Comput Mater Sci 126:479–490CrossRef Panwisawas C, Qiu C, Anderson MJ, Sovani Y, Turner RP, Attallah MM, Brooks JW, Basoalto HC (2017) Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution. Comput Mater Sci 126:479–490CrossRef
26.
go back to reference Francois M, Sun A, King W, Henson N, Tourret D, Bronkhorst C, Carlson N, Newman C, Haut T, Bakosi J et al (2017) Modeling of additive manufacturing processes for metals: Challenges and opportunities. Curr Opin Solid State Mater Sci 21:24513CrossRef Francois M, Sun A, King W, Henson N, Tourret D, Bronkhorst C, Carlson N, Newman C, Haut T, Bakosi J et al (2017) Modeling of additive manufacturing processes for metals: Challenges and opportunities. Curr Opin Solid State Mater Sci 21:24513CrossRef
27.
go back to reference Smith J, Xiong W, Yan W, Lin S, Cheng P, Kafka OL, Wagner GJ, Cao J, Liu WK (2016) Linking process, structure, property, and performance for metal-based additive manufacturing: computational approaches with experimental support. Comput Mech 57:583–610CrossRefMATH Smith J, Xiong W, Yan W, Lin S, Cheng P, Kafka OL, Wagner GJ, Cao J, Liu WK (2016) Linking process, structure, property, and performance for metal-based additive manufacturing: computational approaches with experimental support. Comput Mech 57:583–610CrossRefMATH
28.
go back to reference Leuders S, Vollmer M, Brenne F, Tröster T, Niendorf T (2015) Fatigue strength prediction for titanium alloy tial6v4 manufactured by selective laser melting. Metall Mater Trans A 46(9):3816–3823CrossRef Leuders S, Vollmer M, Brenne F, Tröster T, Niendorf T (2015) Fatigue strength prediction for titanium alloy tial6v4 manufactured by selective laser melting. Metall Mater Trans A 46(9):3816–3823CrossRef
29.
go back to reference Hedayati R, Hosseini-Toudeshky H, Sadighi M, Mohammadi-Aghdam M, Zadpoor A (2016) Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials. Int J Fatigue 84:67–79CrossRef Hedayati R, Hosseini-Toudeshky H, Sadighi M, Mohammadi-Aghdam M, Zadpoor A (2016) Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials. Int J Fatigue 84:67–79CrossRef
30.
go back to reference Yan W, Ge W, Smith J, Lin S, Kafka OL, Lin F, Liu WK (2016) Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater 115:403–412CrossRef Yan W, Ge W, Smith J, Lin S, Kafka OL, Lin F, Liu WK (2016) Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater 115:403–412CrossRef
31.
go back to reference Yan W, Smith J, Ge W, Lin F, Liu WK (2015) Multiscale modeling of electron beam and substrate interaction: a new heat source model. Comput Mech 56(2):265–276CrossRefMATH Yan W, Smith J, Ge W, Lin F, Liu WK (2015) Multiscale modeling of electron beam and substrate interaction: a new heat source model. Comput Mech 56(2):265–276CrossRefMATH
32.
go back to reference Carriere P, Yue S (2017) Energy absorption during pulsed electron beam spot melting of 304 stainless steel: Monte-carlo simulations and in-situ temperature measurements. Vacuum 142:114–122CrossRef Carriere P, Yue S (2017) Energy absorption during pulsed electron beam spot melting of 304 stainless steel: Monte-carlo simulations and in-situ temperature measurements. Vacuum 142:114–122CrossRef
33.
go back to reference Yan W, Qian Y, Ge W, Lin S, Liu WK, Lin F, Wagner GJ (2018) Meso-scale modeling of multiple-layer fabrication process in selective electron beam melting: inter-layer/track voids formation. Mater Des 141:210–219CrossRef Yan W, Qian Y, Ge W, Lin S, Liu WK, Lin F, Wagner GJ (2018) Meso-scale modeling of multiple-layer fabrication process in selective electron beam melting: inter-layer/track voids formation. Mater Des 141:210–219CrossRef
34.
go back to reference Yan W, Ge W, Qian Y, Lin S, Zhou B, Liu WK, Lin F, Wagner GJ (2017) Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 134:324–333CrossRef Yan W, Ge W, Qian Y, Lin S, Zhou B, Liu WK, Lin F, Wagner GJ (2017) Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 134:324–333CrossRef
35.
go back to reference Yan W, Lin S, Kafka OL, Yu C, Liu Z, Lian Y, Wolff S, Cao J, Wagner GJ, Liu WK Modeling process–structure–property relationships for additive manufacturing. Front Mech Eng (Accepted) Yan W, Lin S, Kafka OL, Yu C, Liu Z, Lian Y, Wolff S, Cao J, Wagner GJ, Liu WK Modeling process–structure–property relationships for additive manufacturing. Front Mech Eng (Accepted)
36.
go back to reference Johnson K, Kendall K, Roberts A (1971) Surface energy and the contact of elastic solids. In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences, vol 324. The Royal Society, pp. 301–313 Johnson K, Kendall K, Roberts A (1971) Surface energy and the contact of elastic solids. In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences, vol 324. The Royal Society, pp. 301–313
37.
go back to reference Hirt CW, Nichols BD (1981) Volume of fluid (vof) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225CrossRefMATH Hirt CW, Nichols BD (1981) Volume of fluid (vof) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225CrossRefMATH
38.
go back to reference Lian Y, Lin S, Yan W, Liu WK, Wagner GJ A parallelized three-dimensional cellular automaton model for grain growth during additive manufacturing. Comput Mech (Accepted) Lian Y, Lin S, Yan W, Liu WK, Wagner GJ A parallelized three-dimensional cellular automaton model for grain growth during additive manufacturing. Comput Mech (Accepted)
39.
go back to reference Kurz W, Giovanola B, Trivedi R (1986) Theory of microstructural development during rapid solidification. Acta Metall 34(5):823–830CrossRef Kurz W, Giovanola B, Trivedi R (1986) Theory of microstructural development during rapid solidification. Acta Metall 34(5):823–830CrossRef
40.
go back to reference Lipton J, Glicksman M, Kurz W (1984) Dendritic growth into undercooled alloy melts. Mater Sci Eng 65:57–63CrossRef Lipton J, Glicksman M, Kurz W (1984) Dendritic growth into undercooled alloy melts. Mater Sci Eng 65:57–63CrossRef
41.
go back to reference Gandin C-A, Rappaz M (1994) A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metall Mater 42(7):2233–2246CrossRef Gandin C-A, Rappaz M (1994) A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metall Mater 42(7):2233–2246CrossRef
42.
go back to reference Dezfoli ARA, Hwang W-S, Huang W-C, Tsai T-W (2017) Determination and controlling of grain structure of metals after laser incidence: theoretical approach. Sci Rep 7:41527CrossRef Dezfoli ARA, Hwang W-S, Huang W-C, Tsai T-W (2017) Determination and controlling of grain structure of metals after laser incidence: theoretical approach. Sci Rep 7:41527CrossRef
43.
go back to reference Hashemi H, Sliepcevich C (1967) A numerical method for solving two-dimensional problems of heat conduction with change of phase. Chem Eng Progr Symp Ser 63:34–41 Hashemi H, Sliepcevich C (1967) A numerical method for solving two-dimensional problems of heat conduction with change of phase. Chem Eng Progr Symp Ser 63:34–41
44.
go back to reference Wolff SJ, Lin S, Faierson EJ, Liu WK, Wagner GJ, Cao J (2017) A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti–6Al–4V. Acta Mater 132:106–117CrossRef Wolff SJ, Lin S, Faierson EJ, Liu WK, Wagner GJ, Cao J (2017) A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti–6Al–4V. Acta Mater 132:106–117CrossRef
45.
go back to reference Liu Z, Moore JA, Aldousari SM, Hedia HS, Asiri SA, Liu WK (2015) A statistical descriptor based volume-integral micromechanics model of heterogeneous material with arbitrary inclusion shape. Comput Mech 55(5):963–981MathSciNetCrossRefMATH Liu Z, Moore JA, Aldousari SM, Hedia HS, Asiri SA, Liu WK (2015) A statistical descriptor based volume-integral micromechanics model of heterogeneous material with arbitrary inclusion shape. Comput Mech 55(5):963–981MathSciNetCrossRefMATH
46.
go back to reference Liu Z, Bessa M, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. ComputMethods ApplMech Eng 306:319–341MathSciNet Liu Z, Bessa M, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. ComputMethods ApplMech Eng 306:319–341MathSciNet
47.
go back to reference Liu Z, Moore JA, Liu WK (2016) An extended micromechanics method for probing interphase properties in polymer nanocomposites. J Mech Phys Solids 95:663–680MathSciNetCrossRef Liu Z, Moore JA, Liu WK (2016) An extended micromechanics method for probing interphase properties in polymer nanocomposites. J Mech Phys Solids 95:663–680MathSciNetCrossRef
48.
go back to reference Goury O, Amsallem D, Bordas SPA, Liu WK, Kerfriden P (2016) Automatised selection of load paths to construct reduced-order models in computational damage micromechanics: from dissipation-driven random selection to bayesian optimization. Comput Mech 58(2):213–234MathSciNetCrossRefMATH Goury O, Amsallem D, Bordas SPA, Liu WK, Kerfriden P (2016) Automatised selection of load paths to construct reduced-order models in computational damage micromechanics: from dissipation-driven random selection to bayesian optimization. Comput Mech 58(2):213–234MathSciNetCrossRefMATH
49.
go back to reference Liu Z, Kafka OL, Yu C, Liu WK (2018) Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity. In: Onate E, Peric D, de Souze Neto E, Chiumenti M (eds) Advances in computational plasticity. Springer, pp. 221–242 Liu Z, Kafka OL, Yu C, Liu WK (2018) Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity. In: Onate E, Peric D, de Souze Neto E, Chiumenti M (eds) Advances in computational plasticity. Springer, pp. 221–242
50.
go back to reference Groeber MA, Jackson MA (2014) Dream. 3D: A digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3(1):5CrossRef Groeber MA, Jackson MA (2014) Dream. 3D: A digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3(1):5CrossRef
51.
go back to reference Moore JA, Frankel D, Prasannavenkatesan R, Domel AG, Olson GB, Liu WK (2016) A crystal plasticity-based study of the relationship between microstructure and ultra-high-cycle fatigue life in nickel titanium alloys. Int J Fatigue 91(1):183–194CrossRef Moore JA, Frankel D, Prasannavenkatesan R, Domel AG, Olson GB, Liu WK (2016) A crystal plasticity-based study of the relationship between microstructure and ultra-high-cycle fatigue life in nickel titanium alloys. Int J Fatigue 91(1):183–194CrossRef
52.
go back to reference Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94MathSciNetCrossRefMATH Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94MathSciNetCrossRefMATH
53.
go back to reference Moore JA, Ma R, Domel AG, Liu WK (2014) An efficient multiscale model of damping properties for filled elastomers with complex microstructures. Compos Part B Eng 62:262–270CrossRef Moore JA, Ma R, Domel AG, Liu WK (2014) An efficient multiscale model of damping properties for filled elastomers with complex microstructures. Compos Part B Eng 62:262–270CrossRef
54.
go back to reference Bessa M, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C, Chen W, Liu WK (2017) A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667MathSciNetCrossRef Bessa M, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C, Chen W, Liu WK (2017) A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667MathSciNetCrossRef
55.
go back to reference Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, BurlingtonMATH Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, BurlingtonMATH
56.
go back to reference Mani M, Lane BM, Donmez MA, Feng SC, Moylan SP (2017) A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes. Int J Prod Res 55(5):1400–1418CrossRef Mani M, Lane BM, Donmez MA, Feng SC, Moylan SP (2017) A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes. Int J Prod Res 55(5):1400–1418CrossRef
57.
go back to reference Zhao C, Fezzaa K, Cunningham RW, Wen H, De Carlo F, Chen L, Rollett AD, Sun T (2017) Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep 7:3602 Zhao C, Fezzaa K, Cunningham RW, Wen H, De Carlo F, Chen L, Rollett AD, Sun T (2017) Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep 7:3602
58.
go back to reference Yan W, Lian Y, Yu C, Kafka OL, Liu Z, Liu WK, Wagner GJ An integrated process-structure-property modeling framework for additive manufacturing. (Under review) Yan W, Lian Y, Yu C, Kafka OL, Liu Z, Liu WK, Wagner GJ An integrated process-structure-property modeling framework for additive manufacturing. (Under review)
61.
go back to reference Lian Y, Zhang X, Liu Y (2012) An adaptive finite element material point method and its application in extreme deformation problems. Comput Methods Appl Mech Eng 241:275–285CrossRefMATH Lian Y, Zhang X, Liu Y (2012) An adaptive finite element material point method and its application in extreme deformation problems. Comput Methods Appl Mech Eng 241:275–285CrossRefMATH
62.
63.
go back to reference Tang S, Kopacz AM, Chan O’Keeffe S, Olson GB, Liu WK (2013) Concurrent multiresolution finite element: formulation and algorithmic aspects. Comput Mech 52(6):1265–1279MathSciNetCrossRefMATH Tang S, Kopacz AM, Chan O’Keeffe S, Olson GB, Liu WK (2013) Concurrent multiresolution finite element: formulation and algorithmic aspects. Comput Mech 52(6):1265–1279MathSciNetCrossRefMATH
Metadata
Title
Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing
Authors
Wentao Yan
Stephen Lin
Orion L. Kafka
Yanping Lian
Cheng Yu
Zeliang Liu
Jinhui Yan
Sarah Wolff
Hao Wu
Ebot Ndip-Agbor
Mojtaba Mozaffar
Kornel Ehmann
Jian Cao
Gregory J. Wagner
Wing Kam Liu
Publication date
12-01-2018
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 5/2018
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1539-z

Other articles of this Issue 5/2018

Computational Mechanics 5/2018 Go to the issue