2021 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
Published in:
Recent Innovations in Computing
Big earth data analytics is an emerging field since environmental sciences are probably going to profit by its different systems supporting the handling of the enormous measure of earth observation data, gained and produced through perceptions. It additionally benefits by giving enormous stockpiling and registering capacities. Be that as it may, big earth data analytics requires explicitly planned instruments to show specificities as far as significance of the geospatial data, intricacy of handling, and wide heterogeneity of information models and arrangements [1]. Data ingestion and analysis framework for geoscience data is the study and implementation of extracting data on the system and processing it for change detection and to increase the interoperability with the help of analytical frameworks which aims at facilitating the understanding of the data in a systematic manner. In this paper, we address the challenges and opportunities in the climate data through the climate data toolbox for MATLAB [2] and how it can be beneficial to resolve various climate-change-related analytical difficulties.
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1.
go back to reference Baumann, P., et al.: Big data analytics for earth sciences: the earth server approach. Int. J. Digi. Earth 9, 1–27 (2015). https://doi.org/10.1080/17538947.2014.1003106 CrossRef Baumann, P., et al.: Big data analytics for earth sciences: the earth server approach. Int. J. Digi. Earth
9, 1–27 (2015).
https://doi.org/10.1080/17538947.2014.1003106
CrossRef
2.
3.
go back to reference Russom, P.: Big data analytics. Big Data Analytics, 38 Russom, P.: Big data analytics. Big Data Analytics,
38
4.
go back to reference Verma, J.P., Agrawal, S., Patel, B., Patel, A.: Big data analytics: challenges and applications for text, audio, video, and social media data, international journal on soft computing. Arti. Intel. Appl. (IJSCAI) 5(1), 41–51 (2016). https://doi.org/10.5121/ijscai.2016.5105 CrossRef Verma, J.P., Agrawal, S., Patel, B., Patel, A.: Big data analytics: challenges and applications for text, audio, video, and social media data, international journal on soft computing. Arti. Intel. Appl. (IJSCAI)
5(1), 41–51 (2016).
https://doi.org/10.5121/ijscai.2016.5105
CrossRef
5.
go back to reference Tsai, C.-W., et al.: Big data analytics: a survey. J. Big Data 2(1), 21. https://doi.org/10.1186/s40537-015-0030-3 Tsai, C.-W., et al.: Big data analytics: a survey. J. Big Data
2(1), 21.
https://doi.org/10.1186/s40537-015-0030-3
6.
go back to reference Trends in Big Data Analytics. J. Parallel Distrib. Comput. 74(7):2561–2573. https://doi.org/10.1016/j.jpdc.2014.01.003 Trends in Big Data Analytics. J. Parallel Distrib. Comput.
74(7):2561–2573.
https://doi.org/10.1016/j.jpdc.2014.01.003
7.
go back to reference Agrawal, S., Patel, A.: A study on graph storage database of Nosql. Int. J. Soft Comput. Artif. Int. Appl. (IJSCAI) 5(1), 33–39 (2016). https://doi.org/10.5121/ijscai.2016.5104. URL http://aircconline.com/ijscai/V5N1/5116ijscai04.pdf Agrawal, S., Patel, A.: A study on graph storage database of Nosql. Int. J. Soft Comput. Artif. Int. Appl. (IJSCAI)
5(1), 33–39 (2016).
https://doi.org/10.5121/ijscai.2016.5104. URL
http://aircconline.com/ijscai/V5N1/5116ijscai04.pdf
8.
go back to reference Masani, K.I., Oza, P., Agrawal, S.: Predictive maintenance and monitoring of industrial machine using machine learning. Scalable Comput. Pract. Experience 20(4), 663–668 (2019) CrossRef Masani, K.I., Oza, P., Agrawal, S.: Predictive maintenance and monitoring of industrial machine using machine learning. Scalable Comput. Pract. Experience
20(4), 663–668 (2019)
CrossRef
9.
go back to reference Schnase, J.L., et al.: Big data challenges in climate science, 11. Data ingestion: the first step to a sound data strategy. stitch resource. Stitch https://www.stitchdata.com/resources/data-ingestion/. Accessed 6 Nov 2019 Schnase, J.L., et al.: Big data challenges in climate science, 11. Data ingestion: the first step to a sound data strategy. stitch resource. Stitch
https://www.stitchdata.com/resources/data-ingestion/. Accessed 6 Nov 2019
10.
go back to reference Schnase, J.L., et al.: Big data challenges in climate science, 11. Data Ingestion: the first step to a sound data strategy stitch resource. https://www.stitchdata.com/resources/data-ingestion/. Accessed 6 Nov 2019 Schnase, J.L., et al.: Big data challenges in climate science, 11. Data Ingestion: the first step to a sound data strategy stitch resource.
https://www.stitchdata.com/resources/data-ingestion/. Accessed 6 Nov 2019
11.
go back to reference (PDF) Big data analytics framework for improved decision making. https://www.researchgate.net/publication/273818434_Big_Data_Analytics_Framework_for_Improved_Decision_Making. Accessed 6 Nov 2019 (PDF) Big data analytics framework for improved decision making.
https://www.researchgate.net/publication/273818434_Big_Data_Analytics_Framework_for_Improved_Decision_Making. Accessed 6 Nov 2019
12.
go back to reference Yang, C., et al.: Utilizing cloud computing to address big geospatial data challenges. Comput. Environ. Urban Syst. Geospatial Cloud Comput. Big Data 61, 120–128 (2017). https://doi.org/10.1016/j.compenvurbsys.2016.10.010 CrossRef Yang, C., et al.: Utilizing cloud computing to address big geospatial data challenges. Comput. Environ. Urban Syst. Geospatial Cloud Comput. Big Data
61, 120–128 (2017).
https://doi.org/10.1016/j.compenvurbsys.2016.10.010
CrossRef
13.
go back to reference Giachetta, R.: A framework for processing large scale geospatial and remote sensing data in mapreduce environment. Comput. Graph. 49, 37–46 (2015). https://doi.org/10.1016/j.cag.2015.03.003 CrossRef Giachetta, R.: A framework for processing large scale geospatial and remote sensing data in mapreduce environment. Comput. Graph.
49, 37–46 (2015).
https://doi.org/10.1016/j.cag.2015.03.003
CrossRef
14.
go back to reference Merritt, P., et al.: Big earth data: a comprehensive analysis of visualization analytics issues. Big Earth Data 2(4), 321–350 (2018). https://doi.org/10.1080/20964471.2019.1576260 CrossRef Merritt, P., et al.: Big earth data: a comprehensive analysis of visualization analytics issues. Big Earth Data
2(4), 321–350 (2018).
https://doi.org/10.1080/20964471.2019.1576260
CrossRef
15.
go back to reference Lee, J.-G., Kang, M.: Geospatial big data: challenges and opportunities. Big Data Res. 2(2), 74–81 (2015). https://doi.org/10.1016/j.bdr.2015.01.003 CrossRef Lee, J.-G., Kang, M.: Geospatial big data: challenges and opportunities. Big Data Res.
2(2), 74–81 (2015).
https://doi.org/10.1016/j.bdr.2015.01.003
CrossRef
16.
go back to reference Yu, J., Wu, J., Sarwat, M.: GeoSpark: a cluster computing framework for processing large-scale spatial data. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances In Geographic Information Systems, SIGSPATIAL’15, pp. 1–4. Association for Computing Machinery, Eattle, Washington (2015). https://doi.org/10.1145/2820783.2820860 Yu, J., Wu, J., Sarwat, M.: GeoSpark: a cluster computing framework for processing large-scale spatial data. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances In Geographic Information Systems, SIGSPATIAL’15, pp. 1–4. Association for Computing Machinery, Eattle, Washington (2015).
https://doi.org/10.1145/2820783.2820860
17.
go back to reference Desai, K., Devulapalli, V., Agrawal, S., Kathiria, P.: Patel, A.: Web crawler: review of different types of web crawler, its issues, applications and research opportunities. Int. J. Adv. Res. Comput. Sci. 8(3) (2017) Desai, K., Devulapalli, V., Agrawal, S., Kathiria, P.: Patel, A.: Web crawler: review of different types of web crawler, its issues, applications and research opportunities. Int. J. Adv. Res. Comput. Sci.
8(3) (2017)
18.
go back to reference Agrawal, S., Verma, J.P., Mahidhariya, B., Patel, N., Patel, A.: Survey on mongodb: an open-source document database. Int. J. Adv. Res. Eng. Technol. 1(2), 4 (2015) Agrawal, S., Verma, J.P., Mahidhariya, B., Patel, N., Patel, A.: Survey on mongodb: an open-source document database. Int. J. Adv. Res. Eng. Technol.
1(2), 4 (2015)
19.
go back to reference Yadav, S., Verma, J., Agrawal, S.: SUTRON: IoT-based industrial/home security and automation system to compete the smarter world. Int. J. Appl. Res. Inf. Technol. Comput. 8(2), 193–198 (2017) CrossRef Yadav, S., Verma, J., Agrawal, S.: SUTRON: IoT-based industrial/home security and automation system to compete the smarter world. Int. J. Appl. Res. Inf. Technol. Comput.
8(2), 193–198 (2017)
CrossRef
20.
go back to reference Desai, R., Gandhi, A., Agrawal, S., Kathiria, P., Oza, P.: Iot-based home automation with smart fan and ac using nodemcu. In: Proceedings of ICRIC 2019, Springer, 2020, pp. 197–207 Desai, R., Gandhi, A., Agrawal, S., Kathiria, P., Oza, P.: Iot-based home automation with smart fan and ac using nodemcu. In: Proceedings of ICRIC 2019, Springer, 2020, pp. 197–207
21.
go back to reference Agrawal, S., Patel, A.: Clustering algorithm for community detection in complex network: a comprehensive review. Recent Adv. Comput. Sci. Commun. 13(1), 1–8 (2020). https://doi.org/10.2174/2213275912666190710183635. http://www.eurekaselect.com/node/173402/article Agrawal, S., Patel, A.: Clustering algorithm for community detection in complex network: a comprehensive review. Recent Adv. Comput. Sci. Commun.
13(1), 1–8 (2020).
https://doi.org/10.2174/2213275912666190710183635.
http://www.eurekaselect.com/node/173402/article
22.
go back to reference Agrawal, S.S., Patel, A.: CSG cluster: A collaborative similarity based graph clustering for community detection in complex networks. Int. J. Eng. Adv. Technol. 8(5), 1682–1687 (2019) Agrawal, S.S., Patel, A.: CSG cluster: A collaborative similarity based graph clustering for community detection in complex networks. Int. J. Eng. Adv. Technol.
8(5), 1682–1687 (2019)
23.
go back to reference The Climate Data Toolbox for MATLAB—Greene—2019—Geochemistry, Geophysics, Geosystems—Wiley Online Library. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008392. Accessed 29 Feb 2020 The Climate Data Toolbox for MATLAB—Greene—2019—Geochemistry, Geophysics, Geosystems—Wiley Online Library.
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008392. Accessed 29 Feb 2020
- Title
- Data Ingestion and Analysis Framework for Geoscience Data
- DOI
- https://doi.org/10.1007/978-981-15-8297-4_65
- Authors:
-
Niti Shah
Smita Agrawal
Parita Oza
- Publisher
- Springer Singapore
- Sequence number
- 65