Skip to main content
Top

2019 | OriginalPaper | Chapter

Deep Learning Application in Security and Privacy – Theory and Practice: A Position Paper

Authors : Julia A. Meister, Raja Naeem Akram, Konstantinos Markantonakis

Published in: Information Security Theory and Practice

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Technology is shaping our lives in a multitude of ways. This is fuelled by a technology infrastructure, both legacy and state of the art, composed of a heterogeneous group of hardware, software, services, and organisations. Such infrastructure faces a diverse range of challenges to its operations that include security, privacy, resilience, and quality of services. Among these, cybersecurity and privacy are taking the centre-stage, especially since the General Data Protection Regulation (GDPR) came into effect. Traditional security and privacy techniques are overstretched and adversarial actors have evolved to design exploitation techniques that circumvent protection. With the ever-increasing complexity of technology infrastructure, security and privacy-preservation specialists have started to look for adaptable and flexible protection methods that can evolve (potentially autonomously) as the adversarial actor changes its techniques. For this, Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) were put forward as saviours. In this paper, we look at the promises of AI, ML, and DL stated in academic and industrial literature and evaluate how realistic they are. We also put forward potential challenges a DL based security and privacy protection system has to overcome. Finally, we conclude the paper with a discussion on what steps the DL and the security and privacy-preservation community have to take to ensure that DL is not just going to be hype, but an opportunity to build a secure, reliable, and trusted technology infrastructure on which we can rely on for so much in our lives.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference “Internet security threat report”: Symantec Corporation, Annual Report - Online Volume 23 (2018) “Internet security threat report”: Symantec Corporation, Annual Report - Online Volume 23 (2018)
2.
go back to reference Morgan, S.: 2017 Cybercrime report, cybercrime damages will cost the world us\$6 trillion by 2021. Cybersecurity Ventures, Herjavec Group, Online Report (2017) Morgan, S.: 2017 Cybercrime report, cybercrime damages will cost the world us\$6 trillion by 2021. Cybersecurity Ventures, Herjavec Group, Online Report (2017)
3.
go back to reference Trull, J.: Top 5 best practices to automate security operations. Microsoft Secure, Enterprise Cybersecurity Group, Online Blog, August 2017 Trull, J.: Top 5 best practices to automate security operations. Microsoft Secure, Enterprise Cybersecurity Group, Online Blog, August 2017
4.
go back to reference “2018 Cost of a Data Breach Study: Global Overview”: Ponemon Institute - Benchmark research sponsored by IBM Security, Online Report, July 2018 “2018 Cost of a Data Breach Study: Global Overview”: Ponemon Institute - Benchmark research sponsored by IBM Security, Online Report, July 2018
6.
go back to reference Ciccone, S.: Cybersecurity: More threats, but also more opportunities, Paloalot Networks, Online, June 2016 Ciccone, S.: Cybersecurity: More threats, but also more opportunities, Paloalot Networks, Online, June 2016
7.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
8.
go back to reference Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015) Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
9.
go back to reference Xiong, W., Wu, L., Alleva, F., Droppo, J., Huang, X., Stolcke, A.: The Microsoft 2017 conversational speech recognition system. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5934–5938. IEEE (2018) Xiong, W., Wu, L., Alleva, F., Droppo, J., Huang, X., Stolcke, A.: The Microsoft 2017 conversational speech recognition system. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5934–5938. IEEE (2018)
10.
go back to reference Hinton, G., LeCun, Y., Bengio, Y.: Deep learning, pp. 436–444 (2015) Hinton, G., LeCun, Y., Bengio, Y.: Deep learning, pp. 436–444 (2015)
11.
go back to reference Yuan, Z., Lu, Y., Wang, Z., Xue, Y.: Droid-Sec: deep learning in android malware detection. In: ACM SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 371–372. ACM (2014) Yuan, Z., Lu, Y., Wang, Z., Xue, Y.: Droid-Sec: deep learning in android malware detection. In: ACM SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 371–372. ACM (2014)
12.
go back to reference Saxe, J., Berlin, K.: Deep neural network based malware detection using two dimensional binary program features. In: 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), pp. 11–20. IEEE (2015) Saxe, J., Berlin, K.: Deep neural network based malware detection using two dimensional binary program features. In: 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), pp. 11–20. IEEE (2015)
13.
go back to reference Armstrong, M.: The future of a.i. Statista Infographics, Statista, Online Report, November 2016 Armstrong, M.: The future of a.i. Statista Infographics, Statista, Online Report, November 2016
14.
go back to reference Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017) Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)
15.
go back to reference Carlini, N., et al.: Hidden voice commands. In: 25th USENIX Security Symposium (USENIX Security 16), Austin, TX (2016) Carlini, N., et al.: Hidden voice commands. In: 25th USENIX Security Symposium (USENIX Security 16), Austin, TX (2016)
18.
go back to reference Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn. 58, 121–134 (2016)CrossRef Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn. 58, 121–134 (2016)CrossRef
19.
go back to reference Javaid, A., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network intrusion detection system. In: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp. 21–26 (2016) Javaid, A., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network intrusion detection system. In: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp. 21–26 (2016)
20.
go back to reference Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for network intrusion detection. In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 305–316. IEEE (2010) Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for network intrusion detection. In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 305–316. IEEE (2010)
21.
go back to reference Zolotukhin, M., Hämäläinen, T., Kokkonen, T., Siltanen, J.: Increasing web service availability by detecting application-layer DDoS attacks in encrypted traffic. In: 2016 23rd International Conference on Telecommunications (ICT), pp. 1–6. IEEE (2016) Zolotukhin, M., Hämäläinen, T., Kokkonen, T., Siltanen, J.: Increasing web service availability by detecting application-layer DDoS attacks in encrypted traffic. In: 2016 23rd International Conference on Telecommunications (ICT), pp. 1–6. IEEE (2016)
22.
go back to reference Yuan, X., Li, C., Li, X.: Deepdefense: identifying DDoS attack via deep learning. In: 2017 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 1–8. IEEE (2017) Yuan, X., Li, C., Li, X.: Deepdefense: identifying DDoS attack via deep learning. In: 2017 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 1–8. IEEE (2017)
23.
go back to reference Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318. ACM (2016) Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318. ACM (2016)
24.
go back to reference Li, P., et al.: Multi-key privacy-preserving deep learning in cloud computing. Future Gen. Comput. Syst. 74, 76–85 (2017)CrossRef Li, P., et al.: Multi-key privacy-preserving deep learning in cloud computing. Future Gen. Comput. Syst. 74, 76–85 (2017)CrossRef
25.
go back to reference Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321. ACM (2015) Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321. ACM (2015)
26.
go back to reference Yu, J., Zhang, B., Kuang, Z., Lin, D., Fan, J.: iPrivacy: image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Trans. Inf. Forensics Secur. 12(5), 1005–1016 (2017)CrossRef Yu, J., Zhang, B., Kuang, Z., Lin, D., Fan, J.: iPrivacy: image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Trans. Inf. Forensics Secur. 12(5), 1005–1016 (2017)CrossRef
27.
go back to reference Fadlullah, Z., et al.: State-of-the-art deep learning: evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Commun. Surv. Tutorials 19(4), 2432–2455 (2017)CrossRef Fadlullah, Z., et al.: State-of-the-art deep learning: evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Commun. Surv. Tutorials 19(4), 2432–2455 (2017)CrossRef
28.
go back to reference Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspective, pp. 1798–1828 (2013)CrossRef Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspective, pp. 1798–1828 (2013)CrossRef
30.
go back to reference Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, ser. Proceedings of Machine Learning Research, vol. 27. PMLR, pp. 17–36 (2012) Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, ser. Proceedings of Machine Learning Research, vol. 27. PMLR, pp. 17–36 (2012)
31.
go back to reference Chen, X., Lin, X.: Big data deep learning: challenges and perspectives, pp. 514–525 (2014) Chen, X., Lin, X.: Big data deep learning: challenges and perspectives, pp. 514–525 (2014)
33.
go back to reference Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015)
34.
go back to reference Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep Boltzmann machines, pp. 2949–2980 (2014) Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep Boltzmann machines, pp. 2949–2980 (2014)
35.
go back to reference Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 689–696 (2011) Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 689–696 (2011)
36.
go back to reference Arel, I., Rose, D.C., Karnowski, T.P., et al.: Deep machine learning- a new frontier in artificial intelligence research, pp. 13–18 (2010) Arel, I., Rose, D.C., Karnowski, T.P., et al.: Deep machine learning- a new frontier in artificial intelligence research, pp. 13–18 (2010)
37.
go back to reference Sutskever, I., Józefowicz, R., Zaremba, W.: An empirical exploration of recurrent network architectures. In: ICML (2015) Sutskever, I., Józefowicz, R., Zaremba, W.: An empirical exploration of recurrent network architectures. In: ICML (2015)
38.
go back to reference Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based hyperparameter optimization through reversible learning. In: International Conference on Machine Learning, pp. 2113–2122 (2015) Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based hyperparameter optimization through reversible learning. In: International Conference on Machine Learning, pp. 2113–2122 (2015)
39.
go back to reference Bergstra, Y., Bengio, J.: Random search for hyper-parameter optimization. JMLR 13, 281–305 (2012) Bergstra, Y., Bengio, J.: Random search for hyper-parameter optimization. JMLR 13, 281–305 (2012)
40.
go back to reference Denil, M., Shakibi, B., Dinh, L., De Freitas, N., et al.: Predicting parameters in deep learning, pp. 2148–2156 (2013) Denil, M., Shakibi, B., Dinh, L., De Freitas, N., et al.: Predicting parameters in deep learning, pp. 2148–2156 (2013)
41.
go back to reference Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Comput. 4(1), 1–58 (1992)CrossRef Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Comput. 4(1), 1–58 (1992)CrossRef
42.
go back to reference Prechelt, L.: Automatic early stopping using cross validation: quantifying the criteria. Neural Netw. 11(4), 761–767 (1998)CrossRef Prechelt, L.: Automatic early stopping using cross validation: quantifying the criteria. Neural Netw. 11(4), 761–767 (1998)CrossRef
43.
go back to reference Paszke, A., et al.: Automatic differentiation in PyTorch. In: 31st Conference on Neural Information Processing Systems (NIPS) (2017) Paszke, A., et al.: Automatic differentiation in PyTorch. In: 31st Conference on Neural Information Processing Systems (NIPS) (2017)
44.
go back to reference Zhong, G., Wang, L.-N., Ling, X., Dong, J.: An overview on data representation learning: from traditional feature learning to recent deep learning. J. Finance Data Sci. 2(4), 265–278 (2016)CrossRef Zhong, G., Wang, L.-N., Ling, X., Dong, J.: An overview on data representation learning: from traditional feature learning to recent deep learning. J. Finance Data Sci. 2(4), 265–278 (2016)CrossRef
45.
go back to reference Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding, pp. 675–678. ACM (2014) Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding, pp. 675–678. ACM (2014)
46.
go back to reference Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS P), pp. 372–387, March 2016 Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS P), pp. 372–387, March 2016
Metadata
Title
Deep Learning Application in Security and Privacy – Theory and Practice: A Position Paper
Authors
Julia A. Meister
Raja Naeem Akram
Konstantinos Markantonakis
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-20074-9_10

Premium Partner