Skip to main content
Top

2020 | OriginalPaper | Chapter

Deep Learning Automatic Fetal Structures Segmentation in MRI Scans with Few Annotated Datasets

Authors : Gal Dudovitch, Daphna Link-Sourani, Liat Ben Sira, Elka Miller, Dafna Ben Bashat, Leo Joskowicz

Published in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a new method for end-to-end automatic volumetric segmentation of fetal structures in MRI scans with deep learning networks trained with very few annotated scans. It consists of three main stages: 1) two-step automatic structure segmentation with custom 3D U-Nets; 2) segmentation error estimation, and; 3) segmentation error correction. The automatic structure segmentation stage first computes a region of interest (ROI) on a downscaled scan and then computes a final segmentation on the cropped ROI. The segmentation error estimation stage uses prediction-time augmentations of the input scan to compute multiple segmentations and estimate the segmentation uncertainty for individual slices and for the entire scan. The segmentation error correction stage then uses these estimations to locate the most error-prone slices and to correct the segmentations in those slices based on validated adjacent slices. Experimental results of our methods on fetal body (63 cases, 9 for training, 55 for testing) and fetal brain MRI scans (35 cases, 6 for training, 29 for testing) yield a mean Dice coefficient of 0.96 for both, and a mean Average Symmetric Surface Distance of 0.74 mm and 0.19 mm, respectively, below the observer delineation variability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Litjens, G., et al.: A survey of deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef Litjens, G., et al.: A survey of deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef
3.
go back to reference Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49CrossRef Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-46723-8_​49CrossRef
4.
go back to reference Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the 4th IEEE International Conference on 3D Vision (2016) Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the 4th IEEE International Conference on 3D Vision (2016)
5.
go back to reference Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_25CrossRef Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-319-75238-9_​25CrossRef
6.
go back to reference Karimi, D., Samei, G., Shao, Y., Salcudean, S.: A novel deep learning-based method for prostate segmentation in T2-weighted magnetic resonance imaging. arXiv:1901.09462 (2019) Karimi, D., Samei, G., Shao, Y., Salcudean, S.: A novel deep learning-based method for prostate segmentation in T2-weighted magnetic resonance imaging. arXiv:​1901.​09462 (2019)
7.
go back to reference Salehi, S.S.M., et al.: Real-time automatic fetal brain extraction in fetal MRI by deep learning. In: Proceedings of the IEEE 15th International Symposium on Biomedical Imaging – ISBI 2018, pp. 720–724 (2018) Salehi, S.S.M., et al.: Real-time automatic fetal brain extraction in fetal MRI by deep learning. In: Proceedings of the IEEE 15th International Symposium on Biomedical Imaging – ISBI 2018, pp. 720–724 (2018)
8.
go back to reference Gibson, E., et al.: NiftyNet: a deep-learning platform for medical imaging. Comput. Methods Progr. Biomed. 158, 113–122 (2018)CrossRef Gibson, E., et al.: NiftyNet: a deep-learning platform for medical imaging. Comput. Methods Progr. Biomed. 158, 113–122 (2018)CrossRef
9.
go back to reference Gholipour, A., et al.: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7(1), 1–13 (2017)MathSciNetCrossRef Gholipour, A., et al.: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7(1), 1–13 (2017)MathSciNetCrossRef
10.
go back to reference Fetit, A.E., et al.: A deep learning approach to segmentation of the developing cortex in fetal brain MRI with minimal manual labeling. In: Medical Imaging with Deep Learning (2020) Fetit, A.E., et al.: A deep learning approach to segmentation of the developing cortex in fetal brain MRI with minimal manual labeling. In: Medical Imaging with Deep Learning (2020)
11.
go back to reference Veeraraghavan, H., Miller, J.V.: Active learning guided interactions for consistent image segmentation with reduced user interactions. In: Proceedings of the IEEE International Symposium on Biomed Imaging (2011) Veeraraghavan, H., Miller, J.V.: Active learning guided interactions for consistent image segmentation with reduced user interactions. In: Proceedings of the IEEE International Symposium on Biomed Imaging (2011)
12.
go back to reference Lee, N., Caban, J., Ebadollahi, S., Laine, A.: Interactive segmentation in multimodal medical imagery using a Bayesian transductive learning approach. In: Proceedings of the IEEE International Symposium on Biomedical Imaging (2009) Lee, N., Caban, J., Ebadollahi, S., Laine, A.: Interactive segmentation in multimodal medical imagery using a Bayesian transductive learning approach. In: Proceedings of the IEEE International Symposium on Biomedical Imaging (2009)
13.
go back to reference Wang, G., Li, W.: Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans. Med. Imaging 37, 1562–1573 (2018)CrossRef Wang, G., Li, W.: Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans. Med. Imaging 37, 1562–1573 (2018)CrossRef
14.
go back to reference Braginsky, M., Joskowicz, L.: Interactive segmentation of structures with real-time fine-tuning of a fully convolutional neural network. M.Sc. thesis, The Hebrew University of Jerusalem (2019) Braginsky, M., Joskowicz, L.: Interactive segmentation of structures with real-time fine-tuning of a fully convolutional neural network. M.Sc. thesis, The Hebrew University of Jerusalem (2019)
15.
go back to reference Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems (2017) Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems (2017)
16.
go back to reference Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70 (2017) Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70 (2017)
17.
go back to reference Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)CrossRef Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)CrossRef
18.
go back to reference Loquercio, A., Segu, M., Scaramuzza, D.: A general framework for uncertainty estimation in Deep Learning. arXiv preprint arXiv:1907.06890 (2019) Loquercio, A., Segu, M., Scaramuzza, D.: A general framework for uncertainty estimation in Deep Learning. arXiv preprint arXiv:​1907.​06890 (2019)
19.
go back to reference Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016) Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:​1607.​08022 (2016)
21.
go back to reference Tompson, J., Goroshin, R., Jain, A., Lecun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015) Tompson, J., Goroshin, R., Jain, A., Lecun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)
Metadata
Title
Deep Learning Automatic Fetal Structures Segmentation in MRI Scans with Few Annotated Datasets
Authors
Gal Dudovitch
Daphna Link-Sourani
Liat Ben Sira
Elka Miller
Dafna Ben Bashat
Leo Joskowicz
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-59725-2_35

Premium Partner