Skip to main content
Top
Published in: Wireless Personal Communications 3/2022

12-04-2022

Deep Learning for OFDM Channel Estimation in Impulsive Noise Environments

Authors: Xinbin Li, Zhaoxing Han, Haifeng Yu, Lei Yan, Song Han

Published in: Wireless Personal Communications | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Impulsive noise suppression is essential in orthogonal frequency division multiplexing (OFDM) systems, since impulsive noise may cause a serious decline in channel estimation performance. To solve this problem, a channel estimator based on denoising autoencoder-deep neural network (DAE-DNN) is proposed in this paper. The proposed method is based on a data-driven deep learning framework. Firstly, DAE preprocesses signals to learn damaged data and recover the complete signal are used in the presence of impulsive noise. Then, the transmitted data processed by DAE are used to train the DNN in the offline training process. Finally, the estimated channel state information (CSI) is offered by the proposed DNN model in the online working process. The simulation results demonstrate that the proposed method improves OFDM channel estimation performance significantly. As expected, the proposed method has a better performance than existing ones, such as least squares, minimum mean square error and orthogonal matching pursuit algorithms. Moreover, the proposed method is robust under impulsive noise environments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu, X., Wang, W., Song, X., et al. (2021). Sparse channel estimation via hierarchical hybrid message passing for massive mimo-ofdm systems. IEEE Transactions on Wireless Communications, 20(11), 7118–7134.CrossRef Liu, X., Wang, W., Song, X., et al. (2021). Sparse channel estimation via hierarchical hybrid message passing for massive mimo-ofdm systems. IEEE Transactions on Wireless Communications, 20(11), 7118–7134.CrossRef
2.
go back to reference Li, L., Chen, H., Chang, H.-H., et al. (2020). Deep residual learning meets ofdm channel estimation. IEEE Wireless Communications Letters, 9(5), 615–618.CrossRef Li, L., Chen, H., Chang, H.-H., et al. (2020). Deep residual learning meets ofdm channel estimation. IEEE Wireless Communications Letters, 9(5), 615–618.CrossRef
3.
go back to reference Zafaruddin, S. M., Chapala, V. K., & Prasad, S. (2021). Dual sensor impulse noise cancellation for downstream dsl systems. IEEE Transactions on Communications, 69(5), 3260–3273.CrossRef Zafaruddin, S. M., Chapala, V. K., & Prasad, S. (2021). Dual sensor impulse noise cancellation for downstream dsl systems. IEEE Transactions on Communications, 69(5), 3260–3273.CrossRef
4.
go back to reference Li, H., Dong, Y., Gong, C., et al. (2021). A non-gaussianity-aware receiver for impulsive noise mitigation in underwater communications. IEEE Transactions on Vehicular Technology, 70(6), 6018–6028.CrossRef Li, H., Dong, Y., Gong, C., et al. (2021). A non-gaussianity-aware receiver for impulsive noise mitigation in underwater communications. IEEE Transactions on Vehicular Technology, 70(6), 6018–6028.CrossRef
5.
go back to reference Ozdogan, O., Bjornson, E., & Zhang, J. (2019). Performance of cell-free massive mimo with rician fading and phase shifts. IEEE Transactions on Wireless Communications, 18(11), 5299–5315.CrossRef Ozdogan, O., Bjornson, E., & Zhang, J. (2019). Performance of cell-free massive mimo with rician fading and phase shifts. IEEE Transactions on Wireless Communications, 18(11), 5299–5315.CrossRef
6.
go back to reference Boukhedimi, I., Kammoun, A., & Alouini, M.-S. (2020). Multi-cell mmse combining over correlated rician channels in massive mimo systems. IEEE Wireless Communications Letters, 9(1), 12–16.CrossRef Boukhedimi, I., Kammoun, A., & Alouini, M.-S. (2020). Multi-cell mmse combining over correlated rician channels in massive mimo systems. IEEE Wireless Communications Letters, 9(1), 12–16.CrossRef
7.
go back to reference Kim, S. (2012). Angle-domain frequency-selective sparse channel estimation for underwater MIMO-OFDM systems. IEEE Communications Letters, 16(5), 685–687.CrossRef Kim, S. (2012). Angle-domain frequency-selective sparse channel estimation for underwater MIMO-OFDM systems. IEEE Communications Letters, 16(5), 685–687.CrossRef
8.
go back to reference Tan, G., Wu, B., & Herfet, T. (2018). Performance analysis of OMP-based channel estimations in mobile OFDM systems. IEEE Transactions on Wireless Communications, 17(5), 3459–3473.CrossRef Tan, G., Wu, B., & Herfet, T. (2018). Performance analysis of OMP-based channel estimations in mobile OFDM systems. IEEE Transactions on Wireless Communications, 17(5), 3459–3473.CrossRef
9.
go back to reference Yu, F., Li, D., Guo, Q., et al. (2015). Block-FFT based OMP for compressed channel estimation in underwater acoustic communications. IEEE Communications Letters, 19(11), 1937–1940.CrossRef Yu, F., Li, D., Guo, Q., et al. (2015). Block-FFT based OMP for compressed channel estimation in underwater acoustic communications. IEEE Communications Letters, 19(11), 1937–1940.CrossRef
10.
go back to reference Dargan, S., Kumar, M., Ayyagari, M. R., et al. (2020). A survey of deep learning and its applications: A new paradigm to machine learning. Archives of Computational Methods in Engineering, 27(4), 1071–1092.MathSciNetCrossRef Dargan, S., Kumar, M., Ayyagari, M. R., et al. (2020). A survey of deep learning and its applications: A new paradigm to machine learning. Archives of Computational Methods in Engineering, 27(4), 1071–1092.MathSciNetCrossRef
11.
go back to reference Sanakoyeu, A., Bautista, M. A., & Ommer, B. (2018). Deep unsupervised learning of visual similarities. Pattern Recognition, 78, 331–343.CrossRef Sanakoyeu, A., Bautista, M. A., & Ommer, B. (2018). Deep unsupervised learning of visual similarities. Pattern Recognition, 78, 331–343.CrossRef
12.
go back to reference Snyder, D., Garcia-Romero, D., Sell, G., et al. (2018). X-vectors: Robust dnn embeddings for speaker recognition. In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 5329–5333), IEEE. Snyder, D., Garcia-Romero, D., Sell, G., et al. (2018). X-vectors: Robust dnn embeddings for speaker recognition. In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 5329–5333), IEEE.
13.
go back to reference Otter, D. W., Medina, J. R., & Kalita, J. K. (2021). A survey of the usages of deep learning for natural language processing. IEEE Transactions on Neural Networks and Learning Systems, 32(2), 604–624.MathSciNetCrossRef Otter, D. W., Medina, J. R., & Kalita, J. K. (2021). A survey of the usages of deep learning for natural language processing. IEEE Transactions on Neural Networks and Learning Systems, 32(2), 604–624.MathSciNetCrossRef
14.
go back to reference Seyman, M. N., & Taspinar, N. (2013). Channel estimation based on neural network in space time block coded MIMO OFDM system. Digital Signal Processing, 23(1), 275–280.MathSciNetCrossRef Seyman, M. N., & Taspinar, N. (2013). Channel estimation based on neural network in space time block coded MIMO OFDM system. Digital Signal Processing, 23(1), 275–280.MathSciNetCrossRef
15.
go back to reference Ye, H., Li, G. Y., & Juang, B. H. (2017). Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Communications Letters, 7(1), 114–117.CrossRef Ye, H., Li, G. Y., & Juang, B. H. (2017). Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Communications Letters, 7(1), 114–117.CrossRef
16.
go back to reference Jiang, R., Wang, X., Cao, S., et al. (2019). Deep neural networks for channel estimation in underwater acoustic OFDM systems. IEEE Access, 7, 23579–23594.CrossRef Jiang, R., Wang, X., Cao, S., et al. (2019). Deep neural networks for channel estimation in underwater acoustic OFDM systems. IEEE Access, 7, 23579–23594.CrossRef
17.
go back to reference Soltanpur, C., Rabie, K. M., Adebisi, B., et al. (2018). Masreliez-equalized vofdm in non-gaussian channels: Power line communication systems. IEEE Systems Journal, 12(3), 2803–2811.CrossRef Soltanpur, C., Rabie, K. M., Adebisi, B., et al. (2018). Masreliez-equalized vofdm in non-gaussian channels: Power line communication systems. IEEE Systems Journal, 12(3), 2803–2811.CrossRef
18.
go back to reference Rouissi, F., Vinck, A. J. H., & Ghazel, A. (2021). On the simulation of the middleton class-a noise model for single- and multi-carrier modulation in power line communication. Telecommunication Systems, 77(1), 143–153.CrossRef Rouissi, F., Vinck, A. J. H., & Ghazel, A. (2021). On the simulation of the middleton class-a noise model for single- and multi-carrier modulation in power line communication. Telecommunication Systems, 77(1), 143–153.CrossRef
19.
go back to reference Ferrer-Coll, J., Slimane, S. B., Chilo, J., & Stenumgaard, P. (2015). Detection and suppression of impulsive noise in OFDM receiver. Wireless Personal Communications, 85, 2245–2259.CrossRef Ferrer-Coll, J., Slimane, S. B., Chilo, J., & Stenumgaard, P. (2015). Detection and suppression of impulsive noise in OFDM receiver. Wireless Personal Communications, 85, 2245–2259.CrossRef
20.
go back to reference Chen, P., Rong, Y., Nordholm, S., et al. (2016). Compressed sensing based channel estimation and impulsive noise cancelation in underwater acoustic OFDM systems. In 2016 IEEE Region 10 Conference (TENCON) (pp. 2539–2542), IEEE. Chen, P., Rong, Y., Nordholm, S., et al. (2016). Compressed sensing based channel estimation and impulsive noise cancelation in underwater acoustic OFDM systems. In 2016 IEEE Region 10 Conference (TENCON) (pp. 2539–2542), IEEE.
21.
go back to reference Liu, S., Yang, F., Ding, W., et al. (2015). Double kill: Compressive-sensing-based narrow-band interference and impulsive noise mitigation for vehicular communications. IEEE Transactions on Vehicular Technology, 65(7), 5099–5109.CrossRef Liu, S., Yang, F., Ding, W., et al. (2015). Double kill: Compressive-sensing-based narrow-band interference and impulsive noise mitigation for vehicular communications. IEEE Transactions on Vehicular Technology, 65(7), 5099–5109.CrossRef
22.
go back to reference Yang, Y., Gao, F., Ma, X., et al. (2019). Deep learning-based channel estimation for doubly selective fading channels. IEEE Access, 7, 36579–36589.CrossRef Yang, Y., Gao, F., Ma, X., et al. (2019). Deep learning-based channel estimation for doubly selective fading channels. IEEE Access, 7, 36579–36589.CrossRef
23.
go back to reference Spigler, G. (2019). Denoising autoencoders for overgeneralization in neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(4), 998–1004.CrossRef Spigler, G. (2019). Denoising autoencoders for overgeneralization in neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(4), 998–1004.CrossRef
24.
go back to reference Lee, W. H., Ozger, M., Challita, U., et al. (2021). Noise learning-based denoising autoencoder. IEEE Communications Letters, 25(9), 2983–2987.CrossRef Lee, W. H., Ozger, M., Challita, U., et al. (2021). Noise learning-based denoising autoencoder. IEEE Communications Letters, 25(9), 2983–2987.CrossRef
25.
go back to reference Xiao, C., Yang, D., Chen, Z., et al. (2017). 3-D BLE indoor localization based on denoising autoencoder. IEEE Access, 5, 12751–12760.CrossRef Xiao, C., Yang, D., Chen, Z., et al. (2017). 3-D BLE indoor localization based on denoising autoencoder. IEEE Access, 5, 12751–12760.CrossRef
26.
go back to reference Lv, Z., Qiao, L., Li, J., et al. (2021). Deep-learning-enabled security issues in the internet of things. IEEE Internet of Things Journal, 8(12), 9531–9538.CrossRef Lv, Z., Qiao, L., Li, J., et al. (2021). Deep-learning-enabled security issues in the internet of things. IEEE Internet of Things Journal, 8(12), 9531–9538.CrossRef
27.
go back to reference Zhang, Y., Li, J., Zakharov, Y. V., et al. (2019). Deep learning based single carrier communications over time-varying underwater acoustic channel. IEEE Access, 7, 38420–38430.CrossRef Zhang, Y., Li, J., Zakharov, Y. V., et al. (2019). Deep learning based single carrier communications over time-varying underwater acoustic channel. IEEE Access, 7, 38420–38430.CrossRef
Metadata
Title
Deep Learning for OFDM Channel Estimation in Impulsive Noise Environments
Authors
Xinbin Li
Zhaoxing Han
Haifeng Yu
Lei Yan
Song Han
Publication date
12-04-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09693-z

Other articles of this Issue 3/2022

Wireless Personal Communications 3/2022 Go to the issue