Skip to main content
Top
Published in: Wireless Personal Communications 4/2022

18-01-2022

Deep Neural Network for Beam and Blockage Prediction in 3GPP-Based Indoor Hotspot Environments

Published in: Wireless Personal Communications | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The application of millimeter-wave (mm-wave) frequencies in communication has the potential to address the ever-growing data traffic requirements of next-generation wireless communication devices. However, owing to their high directivity and high penetration loss, directional mm-wave beams are vulnerable to blockages caused by users’ bodies and ambient obstacles. Further development of indoor mm-wave communication is essential, as the majority of data traffic is generated in indoor environments. In previous studies, the mm-wave blockage problem was primarily considered in outdoor scenarios, whereas in the present study, online learning-based beam and blockage prediction in an indoor hotspot (InH) scenario was investigated. During an offline training phase, we constructed a fingerprinting database consisting of user locations along with their respective data traffic demands and corresponding blockage statuses with optimal beam indices. Following its creation, the fingerprinting database was used to train the weights and bias of a properly designed deep neural network (DNN). During a subsequent online learning phase, the trained DNN was fed user locations and corresponding data traffic demands at the served user equipment to output optimal beam indices and blockage statuses. System-level simulations were conducted to assess the accuracy of blockage prediction based on 3GPP’s new radio channel and blockage models in InH environments. Simulation results revealed that the proposed scheme was capable of predicting mm-wave blockages with an accuracy of > 90%. These results confirmed the viability of the proposed DNN model for predicting optimal mm-wave beams and spectral efficiencies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xiao, M., Mumtaz, S., Huang, Y., Dai, L., Li, Y., Matthaiou, M., & Ghosh, A. (2017). Millimeter wave communications for future mobile networks. IEEE Journal on Selected Areas in Communications, 35(9), 1909–1935.CrossRef Xiao, M., Mumtaz, S., Huang, Y., Dai, L., Li, Y., Matthaiou, M., & Ghosh, A. (2017). Millimeter wave communications for future mobile networks. IEEE Journal on Selected Areas in Communications, 35(9), 1909–1935.CrossRef
2.
go back to reference Yong, S. K., & Chong, C. C. (2006). An overview of multigigabit wireless through millimeter wave technology: Potentials and technical challenges. EURASIP Journal on Wireless Communications and Networking, 2007, 1–10.CrossRef Yong, S. K., & Chong, C. C. (2006). An overview of multigigabit wireless through millimeter wave technology: Potentials and technical challenges. EURASIP Journal on Wireless Communications and Networking, 2007, 1–10.CrossRef
3.
go back to reference Marcus, M., & Pattan, B. (2005). Millimeter wave propagation: Spectrum management implications. IEEE Microwave Magazine, 6(2), 54–62.CrossRef Marcus, M., & Pattan, B. (2005). Millimeter wave propagation: Spectrum management implications. IEEE Microwave Magazine, 6(2), 54–62.CrossRef
4.
go back to reference Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models. IEEE Transactions on Antennas and Propagation, 65(12), 6213–6230.CrossRef Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models. IEEE Transactions on Antennas and Propagation, 65(12), 6213–6230.CrossRef
5.
go back to reference El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.CrossRef El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.CrossRef
6.
go back to reference Alkhateeb, A., Mo, J., Gonzalez-Prelcic, N., & Heath, R. W. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine, 52(12), 122–131.CrossRef Alkhateeb, A., Mo, J., Gonzalez-Prelcic, N., & Heath, R. W. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine, 52(12), 122–131.CrossRef
7.
go back to reference Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 436–453.CrossRef Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 436–453.CrossRef
8.
go back to reference Kim, J., & Molisch, A. F. (2014). Fast millimeter-wave beam training with receive beamforming. Journal of Communications and Networks, 16(5), 512–522.CrossRef Kim, J., & Molisch, A. F. (2014). Fast millimeter-wave beam training with receive beamforming. Journal of Communications and Networks, 16(5), 512–522.CrossRef
9.
go back to reference Sheu, J. S. (2017). Hybrid digital and analogue beamforming design for millimeter wave relaying systems. Journal of Communications and Networks, 19(5), 461–469.CrossRef Sheu, J. S. (2017). Hybrid digital and analogue beamforming design for millimeter wave relaying systems. Journal of Communications and Networks, 19(5), 461–469.CrossRef
10.
go back to reference Baianifar, M., Razavizadeh, S. M., Akhlaghpasand, H., & Lee, I. (2019). Energy efficiency maximization in mmWave wireless networks with 3D beamforming. Journal of Communications and Networks, 21(2), 125–135.CrossRef Baianifar, M., Razavizadeh, S. M., Akhlaghpasand, H., & Lee, I. (2019). Energy efficiency maximization in mmWave wireless networks with 3D beamforming. Journal of Communications and Networks, 21(2), 125–135.CrossRef
11.
go back to reference Gapeyenko, M., Samuylov, A., Gerasimenko, M., Moltchanov, D., Singh, S., Aryafar, E., Yeh, S. P., Himayat, N., Andreev, S. & Koucheryavy, Y. (2016). Analysis of human-body blockage in urban millimeter-wave cellular communications. In 2016 IEEE international conference on communications (ICC) (pp. 1–7). IEEE. Gapeyenko, M., Samuylov, A., Gerasimenko, M., Moltchanov, D., Singh, S., Aryafar, E., Yeh, S. P., Himayat, N., Andreev, S. & Koucheryavy, Y. (2016). Analysis of human-body blockage in urban millimeter-wave cellular communications. In 2016 IEEE international conference on communications (ICC) (pp. 1–7). IEEE.
12.
go back to reference MacCartney, G. R., Deng, S., Sun, S., & Rappaport, T. S. (2016). Millimeter-wave human blockage at 73 GHz with a simple double knife-edge diffraction model and extension for directional antennas. In 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall) (pp. 1–6). IEEE. MacCartney, G. R., Deng, S., Sun, S., & Rappaport, T. S. (2016). Millimeter-wave human blockage at 73 GHz with a simple double knife-edge diffraction model and extension for directional antennas. In 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall) (pp. 1–6). IEEE.
13.
go back to reference Alkhateeb, A., Alex, S., Varkey, P., Li, Y., Qu, Q., & Tujkovic, D. (2018). Deep learning coordinated beamforming for highly-mobile millimeter wave systems. IEEE Access, 6, 37328–37348.CrossRef Alkhateeb, A., Alex, S., Varkey, P., Li, Y., Qu, Q., & Tujkovic, D. (2018). Deep learning coordinated beamforming for highly-mobile millimeter wave systems. IEEE Access, 6, 37328–37348.CrossRef
14.
go back to reference Ye, H., Li, G. Y., & Juang, B. H. (2017). Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Communications Letters, 7(1), 114–117.CrossRef Ye, H., Li, G. Y., & Juang, B. H. (2017). Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Communications Letters, 7(1), 114–117.CrossRef
15.
go back to reference Huang, H., Yang, J., Huang, H., Song, Y., & Gui, G. (2018). Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system. IEEE Transactions on Vehicular Technology, 67(9), 8549–8560.CrossRef Huang, H., Yang, J., Huang, H., Song, Y., & Gui, G. (2018). Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system. IEEE Transactions on Vehicular Technology, 67(9), 8549–8560.CrossRef
16.
go back to reference Liu, S., Gao, Z., Zhang, J., Di Renzo, M., & Alouini, M. S. (2020). Deep denoising neural network assisted compressive channel estimation for mmWave intelligent reflecting surfaces. IEEE Transactions on Vehicular Technology, 69(8), 9223–9228.CrossRef Liu, S., Gao, Z., Zhang, J., Di Renzo, M., & Alouini, M. S. (2020). Deep denoising neural network assisted compressive channel estimation for mmWave intelligent reflecting surfaces. IEEE Transactions on Vehicular Technology, 69(8), 9223–9228.CrossRef
17.
go back to reference Ma, X., & Gao, Z. (2020). Data-driven deep learning to design pilot and channel estimator for massive MIMO. IEEE Transactions on Vehicular Technology, 69(5), 5677–5682.CrossRef Ma, X., & Gao, Z. (2020). Data-driven deep learning to design pilot and channel estimator for massive MIMO. IEEE Transactions on Vehicular Technology, 69(5), 5677–5682.CrossRef
18.
go back to reference Guo, Y., Wang, Z., Li, M., & Liu, Q. (2019). Machine learning based mmWave channel tracking in vehicular scenario. In 2019 IEEE International conference on communications workshops (ICC Workshops) (pp. 1–6). IEEE. Guo, Y., Wang, Z., Li, M., & Liu, Q. (2019). Machine learning based mmWave channel tracking in vehicular scenario. In 2019 IEEE International conference on communications workshops (ICC Workshops) (pp. 1–6). IEEE.
19.
go back to reference Wen, C. K., Shih, W. T., & Jin, S. (2018). Deep learning for massive MIMO CSI feedback. IEEE Wireless Communications Letters, 7(5), 748–751.CrossRef Wen, C. K., Shih, W. T., & Jin, S. (2018). Deep learning for massive MIMO CSI feedback. IEEE Wireless Communications Letters, 7(5), 748–751.CrossRef
20.
go back to reference Huang, H., Guo, S., Gui, G., Yang, Z., Zhang, J., Sari, H., & Adachi, F. (2019). Deep learning for physical-layer 5G wireless techniques: Opportunities, challenges and solutions. IEEE Wireless Communications, 27(1), 214–222.CrossRef Huang, H., Guo, S., Gui, G., Yang, Z., Zhang, J., Sari, H., & Adachi, F. (2019). Deep learning for physical-layer 5G wireless techniques: Opportunities, challenges and solutions. IEEE Wireless Communications, 27(1), 214–222.CrossRef
21.
go back to reference Alkhateeb, A., Beltagy, I., & Alex, S. (2018). Machine learning for reliable mmwave systems: Blockage prediction and proactive handoff. In 2018 IEEE Global conference on signal and information processing (GlobalSIP) (pp. 1055–1059). IEEE. Alkhateeb, A., Beltagy, I., & Alex, S. (2018). Machine learning for reliable mmwave systems: Blockage prediction and proactive handoff. In 2018 IEEE Global conference on signal and information processing (GlobalSIP) (pp. 1055–1059). IEEE.
22.
go back to reference Alrabeiah, M., & Alkhateeb, A. (2020). Deep learning for mmWave beam and blockage prediction using sub-6 GHz channels. IEEE Transactions on Communications, 68(9), 5504–5518.CrossRef Alrabeiah, M., & Alkhateeb, A. (2020). Deep learning for mmWave beam and blockage prediction using sub-6 GHz channels. IEEE Transactions on Communications, 68(9), 5504–5518.CrossRef
23.
go back to reference Alrabeiah, M., Hredzak, A., & Alkhateeb, A. (2020, May). Millimeter wave base stations with cameras: Vision-aided beam and blockage prediction. In 2020 IEEE 91st vehicular technology conference (VTC2020-Spring) (pp. 1–5). IEEE. Alrabeiah, M., Hredzak, A., & Alkhateeb, A. (2020, May). Millimeter wave base stations with cameras: Vision-aided beam and blockage prediction. In 2020 IEEE 91st vehicular technology conference (VTC2020-Spring) (pp. 1–5). IEEE.
24.
go back to reference Cisco. (2018). Cisco VNI forecast and trends, 2017–2022. Cisco. (2018). Cisco VNI forecast and trends, 2017–2022.
25.
go back to reference Qualcomm. (2019). Mobile mmwave is here and indoor deployment opportunities abound. Qualcomm. (2019). Mobile mmwave is here and indoor deployment opportunities abound.
26.
go back to reference Torkildson, E., Madhow, U., & Rodwell, M. (2011). Indoor millimeter wave MIMO: Feasibility and performance. IEEE Transactions on Wireless Communications, 10(12), 4150–4160.CrossRef Torkildson, E., Madhow, U., & Rodwell, M. (2011). Indoor millimeter wave MIMO: Feasibility and performance. IEEE Transactions on Wireless Communications, 10(12), 4150–4160.CrossRef
27.
go back to reference Maccartney, G. R., Rappaport, T. S., Sun, S., & Deng, S. (2015). Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks. IEEE Access, 3, 2388–2424.CrossRef Maccartney, G. R., Rappaport, T. S., Sun, S., & Deng, S. (2015). Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks. IEEE Access, 3, 2388–2424.CrossRef
28.
go back to reference Ai, B., Guan, K., He, R., Li, J., Li, G., He, D., & Huq, K. M. S. (2017). On indoor millimeter wave massive MIMO channels: Measurement and simulation. IEEE Journal on Selected Areas in Communications, 35(7), 1678–1690.CrossRef Ai, B., Guan, K., He, R., Li, J., Li, G., He, D., & Huq, K. M. S. (2017). On indoor millimeter wave massive MIMO channels: Measurement and simulation. IEEE Journal on Selected Areas in Communications, 35(7), 1678–1690.CrossRef
29.
go back to reference 3GPP. (2017). Study on 3D channel model for LTE (Release 12). 3GPP. (2017). Study on 3D channel model for LTE (Release 12).
30.
go back to reference 3GPP. (2018). Study on channel model for frequencies from 0.5 to 100 GHz (Release 15). 3GPP. (2018). Study on channel model for frequencies from 0.5 to 100 GHz (Release 15).
31.
go back to reference Aviles, J. C., & Kouki, A. (2016). Position-aided mm-wave beam training under NLOS conditions. IEEE Access, 4, 8703–8714.CrossRef Aviles, J. C., & Kouki, A. (2016). Position-aided mm-wave beam training under NLOS conditions. IEEE Access, 4, 8703–8714.CrossRef
32.
go back to reference Maschietti, F., Gesbert, D., de Kerret, P., & Wymeersch, H. (2017). Robust location-aided beam alignment in millimeter wave massive MIMO. In GLOBECOM 2017-2017 IEEE global communications conference(pp. 1–6). IEEE. Maschietti, F., Gesbert, D., de Kerret, P., & Wymeersch, H. (2017). Robust location-aided beam alignment in millimeter wave massive MIMO. In GLOBECOM 2017-2017 IEEE global communications conference(pp. 1–6). IEEE.
33.
go back to reference Va, V., Choi, J., Shimizu, T., Bansal, G., & Heath, R. W. (2017). Inverse multipath fingerprinting for millimeter wave V2I beam alignment. IEEE Transactions on Vehicular Technology, 67(5), 4042–4058.CrossRef Va, V., Choi, J., Shimizu, T., Bansal, G., & Heath, R. W. (2017). Inverse multipath fingerprinting for millimeter wave V2I beam alignment. IEEE Transactions on Vehicular Technology, 67(5), 4042–4058.CrossRef
34.
go back to reference Lu, Y., Koivisto, M., Talvitie, J., Valkama, M., & Lohan, E. S. (2020). Positioning-aided 3D beamforming for enhanced communications in mmWave mobile networks. IEEE Access, 8, 55513–55525.CrossRef Lu, Y., Koivisto, M., Talvitie, J., Valkama, M., & Lohan, E. S. (2020). Positioning-aided 3D beamforming for enhanced communications in mmWave mobile networks. IEEE Access, 8, 55513–55525.CrossRef
35.
go back to reference Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.CrossRef Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.CrossRef
36.
go back to reference Pedrycz, W., & Chen, S. M. (Eds.). (2020). Deep learning: Concepts and architectures. Springer Pedrycz, W., & Chen, S. M. (Eds.). (2020). Deep learning: Concepts and architectures. Springer
37.
go back to reference Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.MATH Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.MATH
Metadata
Title
Deep Neural Network for Beam and Blockage Prediction in 3GPP-Based Indoor Hotspot Environments
Publication date
18-01-2022
Published in
Wireless Personal Communications / Issue 4/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09513-4

Other articles of this Issue 4/2022

Wireless Personal Communications 4/2022 Go to the issue