Skip to main content
Top
Published in: Wireless Personal Communications 2/2020

16-01-2020

Defense Against Spectrum Sensing Data Falsification Attacker in Cognitive Radio Networks

Authors: Kuldeep Yadav, Sanjay Dhar Roy, Sumit Kundu

Published in: Wireless Personal Communications | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cognitive radio is an empowering innovation that guarantees to achieve spectrum utilization. To manage the muddled wireless condition, cooperative spectrum sensing (CSS) has been proposed to make use of the assorted variety in cognitive radio networks (CRNs). However, due to the simplicity of CRNs, CSS are vulnerable to security threats. Spectrum sensing data falsification (SSDF) attacker is one of the attackers in CSS. In the SSDF attack, malicious secondary users (MSUs) send false sensing decisions to the fusion center, which significantly degrades detection accuracy. In this paper, to identify MSUs, a modified delivery based scheme is proposed, where a minimum number of samples are considering for sensing. The proposed security scheme is shown to successfully alleviate the impact of MSUs on global decision making, which enhances the achievable throughput of an honest secondary user.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference FCC. (2013). Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies. FCC-03-322, p. 1–53. FCC. (2013). Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies. FCC-03-322, p. 1–53.
2.
go back to reference Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef
3.
go back to reference Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef
4.
go back to reference Ghasemi, A., & Sousa, E. S. (2008). Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs. IEEE Communications Magazine, 46(4), 32–39.CrossRef Ghasemi, A., & Sousa, E. S. (2008). Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs. IEEE Communications Magazine, 46(4), 32–39.CrossRef
5.
go back to reference Di Renzo, M., Imbriglio, L., Graziosi, F., & Santucci, F. (2009). Cooperative spectrum sensing over correlated log-normal sensing and reporting channels. IEEE global telecommunications conference, 2009. GLOBECOM (p. 1–8). Di Renzo, M., Imbriglio, L., Graziosi, F., & Santucci, F. (2009). Cooperative spectrum sensing over correlated log-normal sensing and reporting channels. IEEE global telecommunications conference, 2009. GLOBECOM (p. 1–8).
6.
go back to reference Ghasemi, A., & Sousa, E. S. (2005). Collaborative spectrum sensing for opportunistic access in fading environments. First IEEE international symposium on new frontiers in dynamic spectrum access networks. DySPAN 2005, (p. 131–136). Ghasemi, A., & Sousa, E. S. (2005). Collaborative spectrum sensing for opportunistic access in fading environments. First IEEE international symposium on new frontiers in dynamic spectrum access networks. DySPAN 2005, (p. 131–136).
7.
go back to reference Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.CrossRef Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.CrossRef
8.
go back to reference Fragkiadakis, A. G., Tragos, E. Z., & Askoxylakis, I. G. (2013). A survey on security threats and detection techniques in cognitive radio networks. IEEE Communications Surveys & Tutorials, 15(1), 428–445.CrossRef Fragkiadakis, A. G., Tragos, E. Z., & Askoxylakis, I. G. (2013). A survey on security threats and detection techniques in cognitive radio networks. IEEE Communications Surveys & Tutorials, 15(1), 428–445.CrossRef
9.
go back to reference Chen, R., Park, J. M., Hou, Y. T., & Reed, J. H. (2008). Toward secure distributed spectrum sensing in cognitive radio networks. IEEE Communications Magazine, 46(4), 50–55.CrossRef Chen, R., Park, J. M., Hou, Y. T., & Reed, J. H. (2008). Toward secure distributed spectrum sensing in cognitive radio networks. IEEE Communications Magazine, 46(4), 50–55.CrossRef
10.
go back to reference Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. C. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.CrossRef Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. C. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.CrossRef
11.
go back to reference Zhang, L., Ding, G., Wu, Q., Zou, Y., Han, Z., & Wang, J. (2015). Byzantine attack and defense in cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 17(3), 1342–1363.CrossRef Zhang, L., Ding, G., Wu, Q., Zou, Y., Han, Z., & Wang, J. (2015). Byzantine attack and defense in cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 17(3), 1342–1363.CrossRef
12.
go back to reference Wang, W., Li, H., Sun, Y., & Han Z. (2009). Attack-proof collaborative spectrum sensing in cognitive radio networks. 43rd annual IEEE conference on information sciences and systems (p. 130–134). Wang, W., Li, H., Sun, Y., & Han Z. (2009). Attack-proof collaborative spectrum sensing in cognitive radio networks. 43rd annual IEEE conference on information sciences and systems (p. 130–134).
13.
go back to reference Rawat, A. S., Anand, P., Chen, H., & Varshney, P. K. (2011). Collaborative spectrum sensing in the presence of byzantine attacks in cognitive radio networks. IEEE Transactions on Signal Processing, 59(2), 774–786.MathSciNetCrossRef Rawat, A. S., Anand, P., Chen, H., & Varshney, P. K. (2011). Collaborative spectrum sensing in the presence of byzantine attacks in cognitive radio networks. IEEE Transactions on Signal Processing, 59(2), 774–786.MathSciNetCrossRef
14.
go back to reference Zeng, K., Pawelczak, P., & Cabric, D. (2010). Reputation-based cooperative spectrum sensing with trusted nodes assistance. IEEE Communications Letters, 14(3), 226–228.CrossRef Zeng, K., Pawelczak, P., & Cabric, D. (2010). Reputation-based cooperative spectrum sensing with trusted nodes assistance. IEEE Communications Letters, 14(3), 226–228.CrossRef
15.
go back to reference Lu, J., & Wei, P. (2015). Improved cooperative spectrum sensing based on the reputation in cognitive radio networks. International Journal of Electronics, Taylor & Francis, 102(5), 855–863.MathSciNetCrossRef Lu, J., & Wei, P. (2015). Improved cooperative spectrum sensing based on the reputation in cognitive radio networks. International Journal of Electronics, Taylor & Francis, 102(5), 855–863.MathSciNetCrossRef
16.
go back to reference Hyder, C. S., Grebur, B., Xiao, L., & Ellison, M. (2014). ARC: Adaptive reputation based clustering against spectrum sensing data falsification attacks. IEEE Transactions on Mobile Computing, 13(8), 1707–1719.CrossRef Hyder, C. S., Grebur, B., Xiao, L., & Ellison, M. (2014). ARC: Adaptive reputation based clustering against spectrum sensing data falsification attacks. IEEE Transactions on Mobile Computing, 13(8), 1707–1719.CrossRef
17.
go back to reference Feng, J., Zhang, M., Xiao, Y., & Yue, H. (2018). Securing cooperative spectrum sensing against collusive SSDF attack using XOR distance analysis in cognitive radio networks. Sensors, 18(2), 370.CrossRef Feng, J., Zhang, M., Xiao, Y., & Yue, H. (2018). Securing cooperative spectrum sensing against collusive SSDF attack using XOR distance analysis in cognitive radio networks. Sensors, 18(2), 370.CrossRef
18.
go back to reference Zhao, F., Li, S., & Feng, J. (2019). Securing cooperative spectrum sensing against DC-SSDF attack using trust fluctuation clustering analysis in cognitive radio networks. Wireless Communications and Mobile Computing. Zhao, F., Li, S., & Feng, J. (2019). Securing cooperative spectrum sensing against DC-SSDF attack using trust fluctuation clustering analysis in cognitive radio networks. Wireless Communications and Mobile Computing.
19.
go back to reference Feng, J., Li, S., Lv, S., Wang, H., & Fu, A. (2018). Securing cooperative spectrum sensing against collusive false feedback attack in cognitive radio networks. IEEE Transactions on Vehicular Technology, 67(9), 8276–8287.CrossRef Feng, J., Li, S., Lv, S., Wang, H., & Fu, A. (2018). Securing cooperative spectrum sensing against collusive false feedback attack in cognitive radio networks. IEEE Transactions on Vehicular Technology, 67(9), 8276–8287.CrossRef
20.
go back to reference Althunibat, S., Denise, B. J., & Granelli, F. (2016). Identification and punishment policies for spectrum sensing data falsification attackers using delivery-based assessment. IEEE Transactions on Vehicular Technology, 65(9), 7308–7321.CrossRef Althunibat, S., Denise, B. J., & Granelli, F. (2016). Identification and punishment policies for spectrum sensing data falsification attackers using delivery-based assessment. IEEE Transactions on Vehicular Technology, 65(9), 7308–7321.CrossRef
21.
go back to reference Zhang, R., Liang, Y. C., & Cui, S. (2010). Dynamic resource allocation in cognitive radio networks. IEEE Signal Processing Magazine, 27(3), 102–114.CrossRef Zhang, R., Liang, Y. C., & Cui, S. (2010). Dynamic resource allocation in cognitive radio networks. IEEE Signal Processing Magazine, 27(3), 102–114.CrossRef
22.
go back to reference Liang, Y.-C., Zeng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef Liang, Y.-C., Zeng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef
23.
go back to reference Varshney, P. K. (2012). Distributed detection and data fusion. Berlin: Springer. ISBN: 978-1-4612-7333-2. Varshney, P. K. (2012). Distributed detection and data fusion. Berlin: Springer. ISBN: 978-1-4612-7333-2.
24.
go back to reference Caso, G., De Nardis, L., Ferrante, G. C., Di Benedetto, M. G. (2013). Cooperative spectrum sensing based on majority decision under CFAR and CDR constraints. IEEE 24th international symposium on personal, indoor and mobile radio communications (PIMRC Workshops), (p. 51–55). Caso, G., De Nardis, L., Ferrante, G. C., Di Benedetto, M. G. (2013). Cooperative spectrum sensing based on majority decision under CFAR and CDR constraints. IEEE 24th international symposium on personal, indoor and mobile radio communications (PIMRC Workshops), (p. 51–55).
Metadata
Title
Defense Against Spectrum Sensing Data Falsification Attacker in Cognitive Radio Networks
Authors
Kuldeep Yadav
Sanjay Dhar Roy
Sumit Kundu
Publication date
16-01-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07077-9

Other articles of this Issue 2/2020

Wireless Personal Communications 2/2020 Go to the issue